
1

2

The Luddite Litigator's Guide to Databases in E-Discovery

By Craig Ball

When I set out to write a paper on databases in electronic discovery, I went to the

literature to learn prevailing thought and ensure I wasn‟t treading old ground. What I

found surprised me.

I found there‟s next to no literature on the topic! What little authority exists makes

brief mention of flat file, relational and enterprise databases, notes that discovery

from databases is challenging and then flees to other topics.1 A few commentators

mention In re Ford Motor Co.,2 the too-brief 2003 decision reversing a trial court‟s

order allowing a plaintiff to root around in Ford‟s databases with nary a restraint.

Although the 11th Circuit cancelled that fishing expedition, they left the door open for

a party to gain access to an opponent‟s databases on different facts, such as where

the producing party fails to meet its discovery obligations.

The constant counsel offered by any article touching on databases in e-discovery is

“get help.” That‟s good advice, but not always feasible or affordable.

Because databases run the world, we can’t avoid them in e-discovery. We have

to know enough about how they work to deal with them when the case budget or

time constraints make hiring an expert impossible. We need to know how to identify

and preserve databases, and we must learn how to gather sufficient information

about them to frame and respond to discovery about databases.

Databases run the world

You can‟t surf the „net, place a phone call, swipe your parking access card, use an

ATM, charge a meal, buy groceries, secure a driver‟s license, book a flight or get

admitted to an emergency room without a database making it happen.

Databases touch our lives all day, every day. Our computer operating systems and

e-mail applications are databases. The spell checker in our word processor is a

database. Google and Yahoo search engines are databases. Westlaw and Lexis,

too. Craigslist. Amazon.com. E-Bay. Facebook. All big honkin‟ databases.

Yet, when it comes to e-discovery, we tend to fix our attention on documents,

without appreciating that most electronic evidence exists only as a flash mob of

1 A noteworthy exception is the discussion of databases in Michael Arkfeld’s superb treatise, Arkfeld on
Electronic Discovery and Evidence, §3.11 (2d Ed.).
2 345 F.3d 1315 (11th Cir. 2003)

3

information assembled and organized on the fly from a dozen or thousand or million

discrete places. In our zeal to lay hands on documents instead of data, we make

discovery harder, slower and costlier. Understanding databases and acquiring the

skills to peruse and use their contents gets us to the evidence better, faster and

cheaper.

Databases are even changing the way we think about discovery. Historically, parties

weren‟t obliged to create documents for production in discovery; instead, you

produced what you had on file. Today, documents don‟t exist until you generate

them. Tickets, bank statements, websites, price lists, phone records and register

receipts are all just ad hoc reports generated by databases. Documents don‟t take

tangible form until you print them out, and more and more, only the tiniest fraction of

documents—one-tenth of one percent—will emerge as ink on paper, obliging

litigants to be adept at both crafting queries to elicit responsive data and mastering

ways to interpret and use the data stream that emerges.

Introduction to Databases

Most of us use databases with no clue how they work. Take e-mail, for example.

Whether you know it or not, each e-mail message you view in Outlook or through

your web browser is a report generated by a database query and built of select fields

of information culled from a complex dataset. It‟s then presented to you in a user-

friendly arrangement determined by your e-mail client's capabilities and user

settings.

That an e-mail message is not a single, discrete document is confusing to some.

The data segments or “fields” that make up an e-mail are formatted with such

consistency from application-to-application and appear so similar when we print

them out that we mistake e-mail messages for fixed documents. But each is really a

customizable report from the database called your e-mail.

When you see a screen or report from a database, you experience an assemblage

of information that “feels” like a document, but the data that comes together to create

what you see are often drawn from different sources within the database and from

different systems, locations and formats, all changing moment to moment.

Understanding databases begins with mastering some simple concepts and a little

specialized terminology. Beyond that, the distinction between your e-mail database

and Google‟s is mostly marked by differences in scale, optimization and security.

Constructing a Simple Database

If you needed a way to keep track of the cases on your docket, you‟d probably begin

with a simple table of columns and rows written on a legal pad. You‟d start listing

4

your clients by name. Then, you might list the names of other parties, the case

number, court, judge and trial date. If you still had room, you‟d add addresses,

phone numbers, settlement demands, insurance carriers, policy numbers, opposing

counsel and so on.

In database parlance, you‟ve constructed a “table,” and each separate information

item you entered (e.g., name, address, court) is called a “field.” The group of items

you assembled for each client (probably organized in columns and arranged in a row

to the right of each name) is collectively called a “record.” Because the client‟s

name is the field that governs the contents of each record, it would be termed the

“key field.”

Pretty soon, your table would be unwieldy and push beyond the confines of a sheet

of paper. If you added a new matter or client to the table and wanted it to stay in

alphabetical order by client name, you‟d probably have to rewrite the list.

So, you might turn to index cards. Now, each card is a “record” and lists the

information (the “fields”) pertinent to each client. It‟s easy to add cards for new

clients and re-order them by client name. Then, sometimes you‟d want to order

matters by trial date or court. To do that, you‟d either need to extract specific data

from each card to compile a report, re-sort the cards, or maintain three sets of

differently ordered cards, one by name, one by trial date and a third by court.

Your cards comprise a database of three tables. They are still deemed tables even

though you used a card to hold each record instead of a row. One table uses client

name as its key field, another uses the trial date and the third uses the court. Each

of these three sets of cards is a “flat file database,” distinguished by the

characteristic that all the fields and records (the cards) comprise a single file (i.e.,

each a deck of cards) with no relationships or links between the various records and

fields except the table structure (the order of the deck and the order of fields on the

cards).

Of course, you‟d need to keep all cards up-to-date as dates, phone numbers and

addresses change. When a client has more than one matter, you‟d have to write all

the same client data on multiple cards and update each card, one-by-one, trying not

to overlook any card. What a pain!

So, you‟d automate, turning first to something like a spreadsheet. Now, you‟re not

limited by the dimensions of a sheet of paper. When you add a new case, you can

insert it anywhere and re-sort the list by name, court or trial date. You‟re not bound

by the order in which you entered the information, and you can search electronically.

5

Though faster and easier to use than paper and index cards, your simple

spreadsheet is still just a table in a flat file database. You must update every field

that holds the same data when that data changes (though “find and replace”

functions make this more efficient and reliable), and when you want to add, change

or extract information, you have to open and work with the entire table.

What you need is a system that allows a change to one field to update every field in

the database with the same information, not only within a single table but across all

tables in the database. You need a system that identifies the relationship between

common fields of data, updates them when needed and, better still, uses that

common relationship to bring together more related information. Think of it as

adding rudimentary intelligence to a database, allowing it to “recognize” that records

sharing common fields likely relate to common information. Databases that do this

are called “relational databases,” and they account for most of the databases used

in business today, ranging from simple, inexpensive tools like Microsoft Access or

Intuit QuickBooks to enormously complex and costly “enterprise-level” applications

marketed by Oracle and SAP.3

To be precise, only the tables of data are the “database,” and the software used to

create, maintain and interrogate those tables is called the Database Management

System or DBMS. In practice, the two terms are often used interchangeably.

Relational Databases

Let‟s re-imagine your case management system as a relational database. You‟d still

have a table listing all clients organized by name. On this CLIENTS table, each

client record includes name, address and case number(s). Even if a client has

multiple cases in your office, there is still just a single table listing:
CLIENTS

CLT_LAST CLT_FIRST ST_ADD CITY STATE ZIP CASE_NO

Ballmer Steven 3832 Hunts Point Rd. Hunts Point WA 98004 001, 005

Chambers John 5608 River Way Buena Park CA 90621 002
Dell Michael 3400 Toro Canyon Rd. Austin TX 78746 003, 007

Ellison Lawrence 745 Mountain Home Rd. Woodside CA 94062 004

Gates William 1835 73rd Ave. NE Medina WA 98039 001, 005

Jobs Steven 460 Mountain Home Rd. Woodside CA 94062 006, 009

Palmisano Samuel 665 Pequot Ave. Southport CT 06890 007

It‟s essential to keep track of cases and upcoming trials, so you create another table

called CASES:

3 One of the most important and widely used database applications, MySQL, is open source; so, while great
fortunes have been built on relational database tools, the database world is by no means the exclusive
province of commercial software vendors.

6

CASES

CASE_NO TRL_DATE MATTER TYPE COURT

001 2011-02-14 U.S. v. Microsoft Antitrust FDDC-1

002 2012-01-09 EON v Cisco Patent FEDTX-2

003 2011-02-15 In re: Dell Regulatory FWDTX-4

004 2011-05-16 SAP v. Oracle Conspiracy FNDCA-8

005 2012-01-09 Microsoft v. Yahoo Breach of K FWDWA-6

006 2010-12-06 Apple v. Adobe Antitrust FNDCA-8

007 2011-10-31 Dell v. Travis County Tax TX250

008 null Hawkins v. McGee Med Mal FUSSC

009 2011-12-05 Jobs v. City of Woodside Tax CASMD09

You also want to stay current on where your cases will be tried and the presiding

judge, so you maintain a COURTS table for all the matters on your docket:

COURTS

COURT JUDGE FED_ST JURISDICTION

FNDCA-8 Laporte FED Northern District of California (SF)

FDDC-1 Kollar-Kotelly FED USDC District of Columbia

FWDTX-4 Sparks FED Western District of Texas

TX250 Dietz STATE 250
th
 JDS, Travis County, TX

CASMD09 Parsons STATE San Mateo Superior Court, CA

FEDTX-2 Ward FED Eastern District of Texas

FWDWA-6 Jones FED Western District of Washington

FUSSC Hand FED United States Supreme Court

As we look at these three tables, note that each has a unique key field called the

“primary key” for that table.4 For the CLIENTS table, the primary key is the client‟s

last name.5 The primary key is the trial date for the TRIAL_DATES table and it‟s a

unique court identifier for the COURTS table. The essential characteristic of a

primary key is that it cannot repeat within the table for which it serves as primary

key, and a properly-designed database will prevent a user from creating duplicate

primary keys.

Many databases simply assign a unique primary key to each table row, either a

number or a non-recurring value built from elements like the first four letters of a

name, first three numbers in the address, first five letters in the street name and the

Zip code. For example, an assigned key for Steve Ballmer derived from data in the

CLIENTS table might be BALL383HUNTS98004. The primary key is used for

indexing the table to make it more efficient to search, sort, link and perform other

operations on the data.

4
 Tables can have more than one primary key.

5
 In practice, a last name would be a poor choice for a primary key in that names tend not to be

unique—certainly a law firm could expect to have multiple clients with the same surname.

7

Figure 3

Tuples and Attributes

Now, we need to introduce some new

terminology because the world of relational

databases has a language all its own.

Dealing with the most peculiar term first, the

contents of each row in a table is called a

“tuple,” defined as an ordered list of

elements. 6 In the COURTS table above,

there are seven tuples, each consisting of

four elements. These elements, ordered as columns, are called “attributes,” and

what we‟ve called tables in the flat file world are termed “relations” in relational

databases. Put another way, a relation is defined as a set of tuples that have the

same attributes (See Figure 1).

The magic happens in a relational database when tables are

“joined” (much like the cube in Figure 2)7 by referencing one

table from another. 8 This is done by incorporating the

primary key in the table referenced as a “foreign key” in the

referencing table. The table referenced is the “parent

table,” and the referencing table is the “child table” in this

joining of the two relations. In Figure 3, COURTS is the

parent table to CASES with respect to the primary key field,

“COURT.” In the CASES table, the foreign key for the field COURT points back to

the COURTS table, assuring

that the most current data will

populate the field. In turn, the

CLIENTS table employs a

foreign key relating to the

CASE_NO attribute in the

CASE table, again assuring

that the definitive information

6
 Per Wikipedia, the term “tuple” originated as an abstraction of the sequence: single, double, triple,

quadruple, quintuple, sextuple, septuple, octuple...n‑tuple. The unique 0‑tuple is called the null tuple.

A 1‑tuple is called a “singleton,” a 2‑tuple is a “pair” and a 3‑tuple is a “triple” or “triplet.” The n can

be any positive integer. For example, a complex number can be represented as a 2‑tuple, a

quaternion can be represented as a 4‑tuple, an octonion can be represented as an octuple

(mathematicians use the abbreviation "8‑tuple"), and a sedenion can be represented as a 16‑tuple. I

include this explanation to remind readers why we went to law school instead of studying computer

science.
7
 Although unlike the cube, a relational database is not limited to just three dimensions of attachment.

8
 The term “relation” is so confounding here, I will continue to refer to them as tables.

Figure 1

Figure 2

8

populates the attribute in the CLIENTS table.

Remember that what you are seeking here is to ensure that you do not build a

database with inconsistent data, such as conflicting client addresses. Data conflicts

are avoided in relational databases by allowing the parent primary key to serves as

the definitive data source. So, by pointing each child table to that definitive parent

via the use of foreign keys, you promote so-called “referential integrity” of the

database. Remember, also, that while a primary key must be unique to the parent

table, it can be used as many times as desired when referenced as a foreign key.

As in life, parents can have multiple children, but a child can have but one set of

(biological) parents.

Field Properties and Record Structures

When you were writing case data on your index cards, you were unconstrained in

terms of the information you included. You could abbreviate, write dates as words or

numeric values and include as little or as much data as the space on the card and

intelligibility allowed. But for databases to perform properly, the contents of fields

should conform to certain constraints to insure data integrity. For example, you

wouldn‟t want a database to accept four or ten letters in a field reserved for a Zip

code. Neither should the database accept duplicate primary keys or open a case

without including the name of a client. If a field is designed to store only a U.S.

state, then you don‟t want it to accept “Zambia” or “female.” You also don‟t want it to

accept “Noo Yawk.”

Accordingly, databases are built to enforce specified field property requirements.

Such properties may include:

1. Field size: limiting the number of characters that can populate the field or

permitting a variable length entry for memos;

2. Data type: text, currency, integer numbers, date/time, e-mail address and

masks for phone numbers, Social security numbers, Zip codes, etc.;

3. Unique fields: Primary keys must be unique. You typically wouldn‟t want to

assign the same case number to different matters or two Social Security

numbers to the same person.

4. Group or member lists: Often fields may only be populated with data from a

limited group of options (e.g., U.S. states, salutations, departments and

account numbers);

5. Validation rules: To promote data integrity, you may want to limit the range

of values ascribed to a field to only those that makes sense. A field for a

person‟s age shouldn‟t accept negative values or (so far) values in excess of

125. A time field should not accept “25:00pm” and a date field designed for

use by Americans should guard against European date notation. Credit card

9

Figure 4

numbers must conform to specific rules, as must Zip codes and phone

numbers; or

6. Required data: The absence of certain information may destroy the utility of

the record, so certain fields are made mandatory (e.g., a car rental database

may require input of a valid driver‟s license number).

You‟ll appreciate why demanding production of the raw tables in a database may be

an untenable approach to e-discovery when you consider how databases store

information. When a database populates a table, it‟s stored in either fixed length or

variable length fields.

Fixed-Length Field Records

Fixed length fields are established when the database is created, and it‟s important

to appreciate that the data is stored as long sequences of data that may, to the

untrained eye, simply flow together in one incomprehensible blob. A fixed length

field record may begin with information setting out information concerning all of the

fields in the record, such as each field‟s name (e.g., COURT), followed by its data

type (e.g., alphanumeric), length (7 characters) and format (e.g., only values

matching a specified list of courts).

A fixed length field record for a simplified address table might look like Figure 4.

Note how the data is one continuous stream. The name, order and length of data

allocated for each field is defined at the beginning of the string in all those “FIELD=”

and CHAR(x) statements, such that the total length of each record is 107 characters.

To find a given record in a table, the database software simply starts accessing data

10

for that record at a distance (also called an “offset”) from the start of the table equal

to the number of records times the total length allocated to each record. So, as

shown in Figure 5, the fourth record starts 428 characters from the start of the first

record. In turn, each field in the record starts a fixed number of characters from the

start of the record. If you wanted to extract Steve Jobs‟ Zip code from the exemplar

table, the Jobs address record is the 6th record, so it starts 642 characters (or bytes)

from the start of the first record and the Zip code field begins 102 characters from

the start of the sixth record (20+20+40+20+2), or 744 bytes from the start of the first

record. This sort of offset retrieval is tedious for humans, but it‟s a cinch for

computers.

Variable-Length Field Records

One need only recall the anxiety over the Y2K threat to appreciate why fixed length

field records can be problematic. Sometimes, the space allocated to a field proves

insufficient in unanticipated ways, or you may simply need to offer the ability to

expand the size of a record on-the-fly. Databases employ variable length field

records whose size can change from one record to the next. Variable length fields

employ pointer fields that seamlessly redirect data retrieval to a designated point in

the memo file where the variable length field data begins (or continues). The

database software then reads from the memo file until it encounters an end-of-file

marker or another pointer to a memo location holding further data.

Forms, Reports and Query Language

Now that you‟ve glimpsed the ugly guts of database tables, you can appreciate why

databases employ database management software to enter, update and retrieve

Figure 5

11

data. Though DBMS software serves many purposes geared to indexing, optimizing

and protecting data, the most familiar role of DBMS software is as a user interface

for forms and reports.

There‟s little difference between forms and reports except that we tend to call the

interface used to input and modify data a “form” and the interface to extract data a

“report.” Both are simply user-friendly ways to implement commands in “query

languages.”

Query language is the term applied to the set of commands used to retrieve

information from a database. The best known and most widely used of these is

called SQL (for Structured Query Language, officially „ess-cue-ell,‟ but most

everyone calls it “sequel”). SQL is a computer language, but different from computer

languages like Java or C++ that can be used to construct applications, SQL‟s sole

purpose is the creation, management and interrogation of databases.

Though the moniker “query language” might lead anyone to believe that its raison
d'être is to get data out of databases, in fact, SQL handles the heavy lifting of
database creation and data insertion, too. SQL includes subset command sets for
data control (DCL), data manipulation (DML) and data definition (DDL). SQL syntax
is beyond the scope of this paper, but the following snippet of code will give you a
sense of how SQL is used to create a table like the case management tables
discussed above:

CREATE TABLE COURTS

 (COURT varchar(7), PRIMARY KEY,

 JUDGE varchar(18),

 FED_ST varchar(5),

 JURISDICTION varchar (40));

CREATE TABLE CASES

 (CASE_NO int IDENTITY(1,1)PRIMARY KEY,

 TRL_DATE

 MATTER varchar (60),

 TYPE varchar (40)

 COURT varchar(7));

In these few lines, the COURTS and CASES tables are created, named and ordered
into various alphanumeric fields of varying specified lengths. Two primary keys are
set and one key, CASE_NO, is implemented so as to begin with the number 1 and
increment by 1 each time a new case is added to the CASES table.

Who Owns SQL?
I do, so if your firm or clients are using SQL, please have them send gobs of cash to
me so I won‟t sue them.

12

In fact, nobody “owns” SQL, but several giant software companies, notably Oracle
and Microsoft, have built significant products around SQL and produced their own
proprietary dialects of SQL. When you hear someone mention “SQL Server,” they‟re
talking about a Microsoft product, but Microsoft doesn‟t own SQL; it markets a
database application that‟s compatible with SQL.

SQL has much to commend it, being both simple and powerful; but, even the
simplest computer language is too much for the average user. So, databases
employ graphical user interfaces (GUIs) to put a friendly face on SQL. When you
enter data into a form or run a search, you‟re simply triggering a series of pre-
programmed SQL commands.

In e-discovery, if the standard reports supported by the database are sufficiently
encompassing and precise to retrieve the information sought, great! You‟ll have to
arrive at a suitable form of production and perhaps wrangle over scope and privilege
issues; but, the path to the data is clear.

However, because most companies design their databases for operations not

litigation, very often, the standard reporting capabilities won‟t be retrieve the types of

information required in discovery. In that event, you‟ll need more than an SQL

doctor on your team; you‟ll also need a good x-ray of the databases to be plumbed.

Schemas, Data Dictionaries, System Catalogs, and ERDs,

The famed database administrator, Leo Tolstoy, remarked, “Great databases are all

alike, every ordinary database is ordinary in its own way.” Although it‟s with tongue-

in-cheek that I invoke Tolstoy‟s famous observation on happy and unhappy families,

it‟s apt here and means that you can only assume so much about the structure of an

unfamiliar database. After that, you need the manual and a map.

.

In the lingo of database land, the “map” is the database‟s schema, and it‟s housed

in the system‟s data dictionary. It may be the system‟s logical schema, detailing

how the database is designed in terms of its table structures, attributes, fields,

relationships, joins and views. Or, it could be its physical schema, setting out the

hardware and software implementation of the database on machines, storage

devices and networks. As Tolstoy might have said, “A logical schema explains

death; but, it won‟t tell you where the bodies are buried.”

Information in a database is mostly gibberish without the metadata that gives it form

and function. In an SQL database, the compendium of all that metadata is called the

system catalog. In practice, the terms system catalog, schema and data dictionary

seem to be used interchangeably—they are all—in essence--databases storing

information about the metadata of a database. The most important lesson to derive

13

from this discussion is that there is a map—or one can be easily generated—so get

it!

Unlike that elusive Loch Ness monster of e-discovery, the “enterprise data map,” the

schemas of databases tend to actually exist and are usually maps; that is, graphical

depictions of the database structures. Entity-Relationship Modeling (ERM) is a

system and notation used to lay out the conceptual and logical schema of a

relational database. The resulting diagrams (akin to flow charts) are called Entity-

Relationship Diagrams or ERDs (Figure 6).

Figure 6: ERD of Database Schema

14

Two Lessons from the Database Trenches

The importance of securing the schema, manuals, data dictionary and ERDs was

borne out by my experience serving as Special Master for Electronically Stored

Information in a drug product liability action involving thousands of plaintiffs. I was

tasked to expedite discovery from as many as 60 different enterprise databases,

each more sprawling and complex than the next. The parties were at loggerheads,

and serious sanctions were in the offing.

The plaintiffs insisted the databases would yield important evidence. Importantly,

plaintiffs‟ team included support personnel technically astute enough to get deeply

into the weeds with the systems. Plaintiffs were willing to narrow the scope of their

database discovery to eliminate those that were unlikely to be responsive and to

narrow the scope of their requests. But, to do that, they‟d need to know the

systems.

For each system, we faced the same questions:

i. What does the database do?

ii. What is it built on?

iii. What information does it hold?

iv. What content is relevant, responsive and privileged?

v. What forms does it take?

vi. How can it be searched effectively using what query language?

vii. What are its reporting capabilities?

viii. What form or forms of production will be functional, searchable and cost-

effective?

It took a three-step process to turn things around. First, the plaintiffs were required

to do their homework, and the defense supplied the curriculum. That is, the defense

was required to furnish documentation concerning the databases. First, each system

had to be identified. The defense prepared a spreadsheet detailing, inter alia:

 Names of systems

 Applications;

 Date range of data;

 Size of database;

 User groups; and

 Available system documentation (including ERDs and data dictionaries).

This enabled plaintiffs to prioritize their demands to the most relevant systems. I

directed the defendants to furnish operator‟s manuals, schema information and data

dictionaries for the most relevant systems.

15

The second step was ordering that narrowly-focused meet-and-confer sessions be

held between technical personnel for both sides. These were conducted by

telephone, and the sole topic of each was one or more of the databases. The

defense was required to make knowledgeable personnel available for the calls, and

plaintiffs were required to confine their questions to the nuts-and-bolts of the

databases at issue.

When the telephone sessions concluded, Plaintiffs were directed to serve their

revised request for production from the database. In most instances, the plaintiffs

had learned enough about the databases that they were actually able to propose

SQL queries to be run.

This would have been sufficient in most cases, but this case was especially

contentious. The final step needed to resolve the database discovery logjam was a

meeting in the nature of a mediation over which I would preside. In this proceeding,

counsel and technical liaison, joined by the database specialists, would meet face-

to-face over two days. We would work through each database and arrive at specific

agreements concerning the scope of discovery for each system, searches run,

sample sizes employed and timing and form of production. The devil is in the

details, and the goal was to nail down every detail.

It took two such sessions, but in the end, disputes over databases largely ceased,

the production changed hands smoothly, and the parties could refocus on the merits.

The heroes in this story are the technical personnel who collaborated to share

information and find solutions when the lawyers could see only contentions. The

lesson: Get the geeks together, and then get out of their way.

Lesson Two

In a recent case where I served as special master, the Court questioned the

adequacy of defendants‟ search of their databases. The defendants used many

databases to run their far-flung operations, ranging from legacy mainframe systems

housed in national data centers to homebrew applications cobbled together using

Access or Excel. But whether big or small, I found with disturbing regularity that the

persons tasked to query the systems for responsive data didn‟t know how to use

them or lacked the rights needed to access the data they were obliged to search.

The lesson: Never assume that a DBMS query searches all of the potentially

responsive records, and never assume that the operator knows what they are

doing.

Database systems employ a host of techniques to optimize performance and protect

confidentiality. For example

16

 Older records may be routinely purged from the indices;

 Users may lack the privileges within the system to access all the potentially

responsive records;

 Queries may be restricted to regions or business units;

 Tables may not be joined in the particular ways needed to gather the data

sought.

Any of these may result in responsive data being missed, even by an apparently

competent operator.

Establishing operator competence can be challenging, too. Ask a person tasked

with running queries if they have the requisite DBMS privileges required for a

comprehensive search, and they‟re likely to give you a dirty look and insist they do.

In truth, they probably don‟t know. What they have are the privileges they need to

do their job day-to-day; but those may not be nearly sufficient to elicit all of the

responsive information the system can yield.

How do you preserve a database in e-discovery?

Talk to even tech-savvy lawyers about preserving databases, and you‟ll likely hear

how database are gigantic and dynamic or how incomprehensibly risky and

disruptive it is to mess with them. The lawyer who responds, “Don‟t be ridiculous.

We‟re not preserving our databases for your lawsuit,” isn‟t protecting her client.

Or, opposing counsel may say, “Preserve our databases? Sure, no problem. We

back up the databases all the time. We‟ll just set aside some tapes.” This

agreeable fellow isn‟t protecting his client either. When it comes time to search the

data on tape, Mr. Congeniality may learn that his client has no ability to restore the

data without displacing the server currently in use, and restoration doesn‟t come

quick or cheap.

What both of these lawyers should have said is, “Let me explain what we have and

how it works. Better yet, let‟s get our technical advisors together. Then, we‟ll try to

work out a way to preserve what you really need in a way you can use it. If we can‟t

agree, I‟ll tell you what my client will and won‟t do, and you can go to the judge right

away, if you think we haven‟t done enough.”

Granted, this conversation almost never occurs for a host of reasons. Counsel may

have no idea what the client has or how it works. Or the duty to preserve attaches

before an opposing counsel emerges. Or counsel believes that cooperation is

anathema to zealous advocacy and wants only to scorch the Earth.

17

In fact, it‟s not that daunting to subject most databases to a defensible litigation hold,

if you understand how the database works and exert the time and effort required to

determine what you‟re likely to need preserved.

Databases are dynamic by design, but not all databases change in ways that

adversely impact legal hold obligations. Many databases—particularly accounting

databases—are accretive in design. That is, they add new data as time goes on, but

do not surrender the ability to thoroughly search data that existed in prior periods.

For accretive databases, all counsel may need to do is ascertain and insure that

historical data isn‟t going anywhere for the life of the case.

Creating snapshots of data stores or pulling a full backup set for a relevant period is

a sensible backstop to other preservation efforts, as an “if all else fails” insurance

policy against spoliation. If the likelihood of a lawsuit materializing is remote, or if

there is little chance that the tapes preserved will ultimately be subjected to

restoration, preservation by only pulling tapes may prove sufficient and economical.

But, if a lawsuit is certain and discovery from the database(s) is likely, the better

approach is to identify ways to either duplicate and/or segregate the particular

dynamic data you‟ll need or export it to forms that won‟t unduly impair searchability

and utility. That is, you want to keep the essential data reasonably accessible and

shield it from changes that will impair its relevance and probative value.

If the issue in litigation is temporally sensitive—e.g., wholesale drug pricing in 2010

or reduction in force decisions in 2008—you‟ll need to preserve the responsive data

before the myriad components from which it‟s drawn, and the filters, queries and

algorithms that govern how it‟s communicated, change. You‟ll want to retain the

ability to generate the reports that should be reasonably anticipated and not lose that

ability because of an alteration in some dynamic element of the reporting process.

Forms of Production

In no other corner of e-discovery are litigants quite so much as the dog that caught

the car than when dealing with databases. Data from specialized and enterprise

databases often don‟t play well with off-the-shelf applications; not surprising,

considering the horsepower and high cost of the systems tasked to run these big

iron applications. Still, there is always a way.

Sometimes a requesting party demands a copy of an entire database, often with

insufficient consideration of what such a demand might entail were it to succeed. If

the database is built in Access or on other simple platforms, it‟s feasible to acquire

the hardware and software licenses required to duplicate the producing party‟s

database environment sufficiently to run the application. But, if the data sets are so

large as to require massive storage resources or are built on an enterprise-level

18

DBMS like Oracle or SAP, mirroring the environment is almost out of the question. I

say “almost” because the emergence of InfrastructureasaService (“IaaS”) cloud

computing options promises to make it possible for mere mortals to acquire

enterprise-level computing power for short stints

A more likely production scenario is to narrow the data set by use of filters and

queries, then either export the responsive date to a format that can be analyzed in

other applications (e.g., exported as extensible markup language (XML), comma

separated values (CSV) or in another delimited file) or run reports (standard or

custom) and ensure that the reporting takes a form that, unlike paper printouts, lends

itself to electronic search.

Before negotiating a form of production, investigate the capabilities of the DBMS.

The database administrator may not have had occasion to undertake a data export

and so may have no clue what an application can do much beyond the confines of

what it does every day. It‟s the rare DBMS that can‟t export delimited data. Next,

have a proposed form of production in mind and, if possible, be prepared to instruct

the DBMS administrator how to secure the reporting or export format you seek,

Remember that the resistance you experience in seeking to export to electronic

formats may not come from the opposing party of the DBMS administrator. More

often, an insistence on reports being produced as printouts or page images is driven

by the needs of opposing counsel. In that instance, it helps to establish that the

export is feasible as early as possible.

As with other forms of e-discovery, be careful not to accept production in formats

you don‟t want because, like it or not, many courts give just one bite at the

production apple. If you accept it on a paper or as TIFF images for the sake of

expediency, you often close the door on re-production in more useful forms.

Even if the parties can agree upon an electronic form of production, it‟s nevertheless

a good idea to secure a test export to evaluate before undertaking a high volume

export.

Closing Thoughts

When dealing with databases in e-discovery, requesting parties should avoid the

trap of “You have it. I want it.” Lawyers who‟d never be so foolish as to demand the

contents of a file room will blithely insist on production of the “database.” For most,

were they to succeed in such a foolish quest, they‟d likely find themselves in

possession of an obscure collection of inscrutable information they can‟t possibly

use.

19

Things aren‟t much better on the producing party‟s side, where counsel routinely fail

to explore databases in e-discovery on the theory that, if a report hasn‟t been printed

out, it doesn‟t have to be created for the litigation. Even when they do acknowledge

the duty to search databases, few counsel appreciate how pervasively embedded

databases are in their clients‟ businesses, and fewer still possess the skills needed

to translate an amorphous request for production into precise, effective queries.

 Each is trading on ignorance, and both do their clients a disservice.

But, these are the problems of the past, and increasingly, there‟s cause for cautious

optimism in how lawyers and litigants approach databases in discovery. Counsel

are starting to inquire into the existence and role of databases earlier in the litigation

timeline and are coming to appreciate not only how pervasive databases are in

modern commerce, but how inescapable it is that they take their place as important

sources of discoverable ESI.

