
1

2

Processing in E-Discovery, a Primer
Craig Ball1
© 2019 All Rights Reserved

Table of Contents
Table of Contents .. 2

Introduction .. 4

Why process ESI in e-discovery? Isn’t it “review ready?” ... 5

Files ... 6

A Bit About and a Byte Out of Files .. 6

Digital Encoding ... 7

Decimal and Binary: Base 10 and Base Two ... 7

Bits ... 7

Bytes .. 8

The Magic Decoder Ring called ASCII ... 9

Unicode .. 12

Mind the Gap! .. 13

Hex ... 13

Base64 ... 14

Why Care about Encoding? .. 15

Hypothetical: TaggedyAnn ... 16

File Type Identification .. 16

File Extensions ... 17

Binary File Signatures ... 17

File Structure ... 18

Data Compression ... 19

Identification on Ingestion .. 21

1 Adjunct Professor, E-Discovery & Digital Evidence, University of Texas School of Law, Austin, Texas. The author
acknowledges the contributions of Diana Ball as editor and of David Sitsky of Nuix for his insights into processing.

3

Media (MIME) Type Detection .. 22

Media Type Tree Structure .. 22

When All Else Fails: Octet Streams and Text Stripping .. 24

Data Extraction and Document Filters .. 24

Recursion and Embedded Object Extraction ... 27

Simple Document... 28

Structured Document .. 28

Compound Document .. 28

Simple Container ... 29

Container with Text ... 29

Family Tracking and Unitization: Keeping Up with the Parts ... 29

Exceptions Reporting: Keeping Track of Failures ... 29

Lexical Preprocessing of Extracted Text .. 30

Normalization .. 30

Character Normalization ... 30

Unicode Normalization .. 30

Diacritical Normalization ... 31

Case Normalization.. 31

Impact of Normalization on Discovery Outcomes ... 32

Time Zone Normalization .. 33

Parsing and Tokenization .. 33

Building a Database and Concordance Index .. 37

The Database ... 37

The Concordance Index ... 38

Culling and Selecting the Dataset .. 39

Immaterial Item Suppression .. 39

De-NISTing ... 40

Cryptographic Hashing: ... 40

Deduplication .. 45

Near-Deduplication .. 45

Office 365 Deduplication ... 49

4

Relativity E-Mail Deduplication .. 50

Other Processing Tasks ... 52

Foreign Language Detection .. 52

Entropy Testing ... 52

Decryption ... 52

Bad Extension Flagging .. 52

Color Detection ... 52

Hidden Content Flagging ... 52

N-Gram and Shingle Generation .. 53

Optical Character Recognition (OCR) ... 53

Virus Scanning ... 53

Production Processing ... 53

Illustration 1: E-Discovery Processing Model ... 53

Illustration 2: Anatomy of a Word DOCX File .. 55

Introduction
Talk to lawyers about e-discovery processing and you’ll likely get a blank stare suggesting no clue

what you’re talking about. Why would lawyers want anything to do with something so

disagreeably technical? Indeed, processing is technical and strikes attorneys as something they

need not know. That’s lamentable because processing is a stage of e-discovery where things can

go terribly awry in terms of cost and outcome. Lawyers who understand the fundamentals of ESI

processing are better situated to avoid costly mistakes and resolve them when they happen. This

paper looks closely at ESI processing and seeks to unravel its mysteries.

Processing is the “black box” between preservation/collection and review/analysis. Though the

iconic Electronic Discovery Reference Model (EDRM) positions Processing, Review and Analysis

as parallel paths to Production, processing is an essential prerequisite—“the only road”—to

Review, Analysis and Production.2 Any way you approach e-discovery at scale, you must process

ESI before you can review or analyze it. If we recast the EDRM to reflect processing’s centrality,

the famed schematic would look like this:

2 That’s not a flaw. The EDRM is a conceptual view, not a workflow.

5

There are hundreds—perhaps thousands—of articles delving into the stages of e-discovery that

flank processing in the EDRM. These are the stages where lawyers have had a job to do. But

lawyers tend to cede processing decisions to technicians. When it comes to processing, lawyer

competency and ken is practically non-existent, little more than “stuff goes in, stuff comes out.”

Why process ESI in e-discovery? Isn’t it “review ready?”

We process information in e-discovery to catalog and index contents for search and review.

Unlike Google, e-discovery is the search for all responsive information in a collection, not just

one information item deemed responsive. Though all electronically stored information is

inherently electronically searchable, computers don’t structure or search all ESI in the same way;

so, we must process ESI to normalize it to achieve uniformity for indexing and search.

Thus, “processing” in e-discovery could be called “normalized access,” in the sense of extracting

content, decoding it and managing and presenting content in consistent ways for access and

review. It encompasses the steps required to extract text and metadata from information items

and build a searchable index. The closest analogy is the creation of a Google-like capability with

respect to a discrete collection of documents, data and metadata.

ESI processing tools perform five common functions.4 They must:

1) Decompress, unpack and fully explore, i.e., recurse ingested items.

4 While a processing tool may do considerably more than the listed functions, a tool that does less is unlikely to meet
litigants’ needs in e-discovery.

6

2) Identify and apply templates (filters) to encoded data to parse (interpret) contents and

extract text, embedded objects, and metadata.

3) Track and hash items processed, enumerating and unitizing all items and tracking failures.

4) Normalize and tokenize text and data and create an index and database of extracted

information.

5) Cull data by file type, date, lexical content, hash value and other criteria.

These steps are a more detailed description of processing than I’ve seen published; but I mean

to go deeper, diving into how it works and exposing situations where it may fail to meet

expectations.5

Files
If we polled lawyers asking what to call the electronic items preserved, collected and processed

in discovery, most would answer, “documents.” Others might opt for “data” or reflect on the

initialization “ESI” and say, “information.” None are wrong answers, but the ideal response would

be the rarest: “files.” Electronic documents are files. Electronically stored information resides in

files. Everything we deal with digitally in electronic discovery comes from or goes to physical or

logical data storage units called “data files” or just “files.” Moreover, all programs run against

data files are themselves files comprising instructions for tasks. These are “executable files” or

simply “executables.”

So, what is it we process in the processing stage of e-discovery? The answer is, “we process

files.” Let’s look at these all-important files and explore what’s in them and how are they work.

A Bit About and a Byte Out of Files

A colleague once defended her ignorance of the technical fundamentals of electronically stored

information by analogizing that “she didn’t need to know how planes stay aloft to fly on one.”

She had a point, but only for passengers. If you aspire to be a pilot or a rocket scientist—if you

want to be at the controls or design the plane—you must understand the fundamentals of flight.

If you aspire to understand processing of ESI in e-discovery and manage e-discovery, you must

understand the fundamentals of electronically stored information, including such topics as:

• What’s stored electronically?

• How is it stored?

5 Though I commend the abandoned efforts of the EDRM to educate via their Processing Standards Guide, still in
its public comment phase five+ years after publication. https://www.edrm.net/resources/frameworks-and-
standards/edrm-model/edrm-stages-standards/edrm-processing-standards-guide-version-1/

https://www.edrm.net/resources/frameworks-and-standards/edrm-model/edrm-stages-standards/edrm-processing-standards-guide-version-1/
https://www.edrm.net/resources/frameworks-and-standards/edrm-model/edrm-stages-standards/edrm-processing-standards-guide-version-1/

7

• What forms does it take?

The next few pages are a crash course in ESI storage, particularly the basics of encoding and

recording textual information. If you can tough it out, you’ll be undaunted by discussions of “Hex

Magic Numbers” and “Unicode Normalization” yet to come.

Digital Encoding

All digital evidence is encoded, and how it’s encoded bears upon how it’s collected and processed,

whether it can be searched and in what reasonably usable forms it can be produced.

Understanding that electronically stored information is numerically encoded data helps us see

the interplay and interchangeability between different forms of digital evidence. Saying “it’s all

ones and zeroes” means nothing if you don’t grasp how those ones and zeros underpin the

evidence.

Decimal and Binary: Base 10 and Base Two

When we were children starting to count, we had to learn the decimal system. We had to think

about what numbers meant. When our first-grade selves tackled big numbers like 9,465, we

were acutely aware that each digit represented a decimal multiple. The nine was in the

thousands place, the four in the hundreds, the six in the tens place and the five in the ones. We

might even have parsed 9,465 as: (9 x 1000) + (4 x 100) + (6 x 10) + (5 x 1).

But soon, it became second nature to us. We’d unconsciously process 9,465 as nine thousand

four hundred sixty-five. As we matured, we learned about powers of ten and now saw 9,465 as:

(9 x 103) + (4 x 102) + (6 x 101) + (5 x 100). This was exponential or “base ten” notation. We flushed

it from our adolescent brains as fast as life (and the SAT) allowed.

Humankind probably uses base ten to count because we evolved with ten fingers. But, had we

slithered from the ooze with eight or twelve digits, we’d have gotten on splendidly using a base

eight or base twelve number system. It really wouldn’t matter because you can express any

number—and consequently any data—in any number system. So, it happens that computers

use the base two or binary system, and computer programmers are partial to base sixteen or

hexadecimal. Data is just numbers, and it’s all just counting. The radix or base is the number

of unique digits, including the digit zero, used to represent numbers in a positional numeral

system. For the decimal system the radix is ten, because it uses the ten digits, 0 through 9.

Bits

Computers use binary digits in place of decimal digits. The word bit is even a shortening of the

words "Binary digIT." Unlike the decimal system, where we represent any number as a

combination of ten possible digits (0-9), the binary system uses only two possible values: zero or

one. This is not as limiting as one might expect when you consider that a digital circuit—

8

essentially an unfathomably complex array of switches—hasn’t got any fingers to count on but is

very good and very fast at being “on” or “off.”

In the binary system, each binary digit—each “bit”—holds the value

of a power of two. Therefore, a binary number is composed of only

zeroes and ones, like this: 10101. How do you figure out what the

value of the binary number 10101 is? You do it in the same way we

did it above for 9,465, but you use a base of 2 instead of a base of

10. Hence: (1 x 24) + (0 x 23) + (1 x 22) + (0 x 21) + (1 x 20) = 16 + 0 +

4 + 0 + 1 = 21.

Moving from right to left, each bit you encounter represents the

value of increasing powers of 2, standing in for zero, two, four,

eight, sixteen, thirty-two, sixty-four and so on. That makes

counting in binary easy. Starting at zero and going through 21,

decimal and binary equivalents look like the table at right.

Bytes

A byte is a string (sequence) of eight bits. The

biggest number that can be stored as one byte of

information is 11111111, equal to 255 in the

decimal system. The smallest number is zero or

00000000. Thus, you can store 256 different

numbers as one byte of information. So, what do

you do if you need to store a number larger than

256? Simple! You use a second byte. This affords

you all the combinations that can be achieved with

16 bits, being the product of all of the variations of

the first byte and all of the second byte (256 x 256 or 65,536). So, using bytes to express values,

we express any number greater than 256 using at least two bytes (called a “word” in geek speak),

and any number above 65,536 requires three bytes or more. A value greater than 16,777,216

(2563, the same as 224) needs four bytes (called a “long word”) and so on.

Let’s try it: Suppose we want to represent the number 51,975. It’s 1100101100000111, viz:

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

32768 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

1 1 0 0 1 0 1 1 + 0 0 0 0 0 1 1 1

(32768+16384+2048+512+256) or 51,968 + (4+2+1) or 7

9

Why are eight-bit sequences the fundamental building blocks of

computing? It just happened that way. In these times of cheap memory,

expansive storage and lightning-fast processors, it’s easy to forget how

scarce and costly such resources were at the dawn of the computing era.

Seven bits (with a leading bit reserved) was the smallest block of data

that would suffice to represent the minimum complement of alphabetic

characters, decimal digits, punctuation and control instructions needed

by the pioneers in computer engineering. It was, in a sense, all the data

early processors could bite off at a time, perhaps explaining the name

“byte” (coined in 1956 by IBM scientist Dr. Werner Buchholz).

The Magic Decoder Ring called ASCII

Back in 1935, American kids who listened to the Little Orphan Annie

radio show and drank lots of Ovaltine could join the Radio Orphan

Annie Secret Society and obtain a Magic Decoder Ring, a device

with rotating disks that allowed them to read and write

numerically-encoded messages.

Similarly, computers encode words as numbers. Binary data stand

in for the upper- and lower-case English alphabet, as well as

punctuation marks, special characters and machine instructions (like

carriage return and line feed). The most widely deployed U.S. encoding

mechanism is known as the ASCII code (for American Standard Code for

Information Interchange, pronounced “ask-key”). By limiting the ASCII character set to just 128

characters, we can express any character in just seven bits (27 or 128) and so occupy only one

byte in the computer's storage and memory. In the Binary-to-ASCII Table below, the columns

reflect a binary (byte) value, its decimal equivalent and the corresponding ASCII text value

(including some for machine codes and punctuation):

Binary-to-ASCII Table

Binary Decimal Character Binary Decimal Character Binary Decimal Character

00000000 000 NUL 00101011 043 + 01010110 086 V

00000001 001 SOH 00101100 044 , 01010111 087 W

00000010 002 STX 00101101 045 - 01011000 088 X

00000011 003 ETX 00101110 046 . 01011001 089 Y

00000100 004 EOT 00101111 047 / 01011010 090 Z

Werner Buchholz

10

Binary Decimal Character Binary Decimal Character Binary Decimal Character

00000101 005 ENQ 00110000 048 0 01011011 091 [

00000110 006 ACK 00110001 049 1 01011100 092 \

00000111 007 BEL 00110010 050 2 01011101 093]

00001000 008 BS 00110011 051 3 01011110 094 ^

00001001 009 HT 00110100 052 4 01011111 095 _

00001010 010 LF 00110101 053 5 01100000 096 `

00001011 011 VT 00110110 054 6 01100001 097 a

00001100 012 FF 00110111 055 7 01100010 098 b

00001101 013 CR 00111000 056 8 01100011 099 c

00001110 014 SO 00111001 057 9 01100100 100 d

00001111 015 SI 00111010 058 : 01100101 101 e

00010000 016 DLE 00111011 059 ; 01100110 102 f

00010001 017 DC1 00111100 060 < 01100111 103 g

00010010 018 DC2 00111101 061 = 01101000 104 h

00010011 019 DC3 00111110 062 > 01101001 105 i

00010100 020 DC4 00111111 063 ? 01101010 106 j

00010101 021 NAK 01000000 064 @ 01101011 107 k

00010110 022 SYN 01000001 065 A 01101100 108 l

00010111 023 ETB 01000010 066 B 01101101 109 m

00011000 024 CAN 01000011 067 C 01101110 110 n

00011001 025 EM 01000100 068 D 01101111 111 o

00011010 026 SUB 01000101 069 E 01110000 112 p

00011011 027 ESC 01000110 070 F 01110001 113 q

00011100 028 FS 01000111 071 G 01110010 114 r

00011101 029 GS 01001000 072 H 01110011 115 s

00011110 030 RS 01001001 073 I 01110100 116 t

11

Binary Decimal Character Binary Decimal Character Binary Decimal Character

00011111 031 US 01001010 074 J 01110101 117 u

00100000 032 SP 01001011 075 K 01110110 118 v

00100001 033 ! 01001100 076 L 01110111 119 w

00100010 034 " 01001101 077 M 01111000 120 x

00100011 035 # 01001110 078 N 01111001 121 y

00100100 036 $ 01001111 079 O 01111010 122 z

00100101 037 % 01010000 080 P 01111011 123 {

00100110 038 & 01010001 081 Q 01111100 124 |

00100111 039 ' 01010010 082 R 01111101 125 }

00101000 040 (01010011 083 S 01111110 126 ~

00101001 041) 01010100 084 T 01111111 127 DEL

00101010 042 * 01010101 085 U Note: 0-127 is 128 values

So, “E-Discovery” would be written in a binary ASCII sequence as:

0100010100101101010001000110100101110011011000110110111101110110011001010111

001001111001

It would be tough to remember your own name written in this manner! Hi, I’m Craig, but my

computer calls me 0100001101110010011000010110100101100111.

Note that each leading bit of each byte in the table above is a zero. It wasn’t used to convey any

encoding information; that is, they are all 7-bit bytes. In time, the eighth bit (the leading zero)

would change to a one and was used to encode another 128 characters (28 or 256) , leading to

various “extended” (or “high”) ASCII sets that include, e.g., accented characters used in foreign

languages and line drawing characters.

Unfortunately, these extra characters weren’t assigned in the same way by all computer systems.

The emergence of different sets of characters mapped to the same high byte values prompted a

need to identify these various character encodings or, as Microsoft calls them in Windows, these

“code pages.” If an application used the wrong code page, information displayed as gibberish.

This is such a familiar phenomenon that it has its own name, mojibake (from the Japanese for

12

“character changing”). If you’ve encountered a bunch of Asian language characters in an e-mail

or document you know was written in English, you might have glimpsed mojibake.

Note that we are speaking here of textual information, not typography; so, don’t confuse

character encodings with fonts. The former tells you whether the character is an A or b, not

whether to display the character in Arial or Baskerville.

In the mid-1980s, international standards began to emerge for character encoding, ultimately

resulting in various code sets issued by the International Standards Organization (ISO). These

retained the first 128 American ASCII values and assigned the upper 128-byte values to characters

suited to various languages (e.g., Cyrillic, Greek, Arabic and Hebrew). ISO called these various

character sets ISO-8859-n, where the “n” distinguished the sets for different languages. ISO-

8859-1 was the set suited to Latin-derived alphabets (like English) and so the nickname for the

most familiar code page to U.S. computer users became “Latin 1.”

But Microsoft adopted the Windows code page before the ISO standard became final, basing its

Latin 1 encoding on an earlier draft promulgated by the American National Standards Institute

(ANSI). Thus, the standard Windows Latin-1 code page, called Windows-1252 (ANSI), is mostly

identical to ISO-8859-1, and it’s common to see the two referred to interchangeably as “Latin 1.”

Unicode

ASCII dawned in the pre-Internet world of 1963—before the world was flat, when the West

dominated commerce and personal computing was the stuff of science fiction. Using a single

byte (even with various code pages) supported only 256 characters, so was incompatible with

Asian languages like Chinese, Japanese and Korean employing thousands of pictograms and

ideograms.

Though programmers developed various ad hoc approaches to foreign language encodings, we

needed a universal, systematic encoding mechanism to serve an increasingly interconnected

world. These methods would use more than one byte to represent each character. The most

widely adopted such system is Unicode. In its latest incarnation (version 12.1), Unicode

standardizes the encoding of 150 written languages called “scripts” comprising 127,994

characters, plus multiple symbol sets and emoji.

The Unicode Consortium crafted Unicode to co-exist with the longstanding ASCII and ANSI

character sets by emulating the ASCII character set in corresponding byte values within the more

extensible Unicode counterpart, UTF-8. Because of its backward compatibility and multilingual

adaptability, UTF-8 has become a popular encoding standard, especially on the Internet and

within e-mail systems.

13

Mind the Gap!

Now, as we talk about all these bytes and encoding standards as a precursor to hexadecimal

notation, it will be helpful to revisit how this all fits together. A byte is eight ones or zeroes, which

means a byte can represent 256 different decimal numbers from 0-255. So, two bytes can

represent a much bigger range of decimal values (256 x 256 or 65,536). Character encodings (aka

“code pages”) like Latin 1 and UTF-8 are ways to map textual, graphical or machine instructions

to numeric values expressed as bytes, enabling machines to store and communicate information

in human languages. As we move forward, keep in mind that hex, like binary and decimal, is just

another way to write numbers. Hex is not a code page, although the numeric values it represents

may correspond to values within code pages. 6

Hex

Long sequences of ones and zeroes are very confusing for people, so hexadecimal notation

emerged as more accessible shorthand for binary sequences. Considering the prior discussion of

base 10 (decimal) and base 2 (binary) notation, it might be enough to say that hexadecimal is

base 16. In hexadecimal notation (hex for short), each digit can be any value from zero to fifteen.

Accordingly, we can replace four binary digits with just a single hexadecimal digit, and more to

the point, we can express a byte as just two hex characters.

The decimal system supplies only 10 symbols (0-9) to represent numbers. Hexadecimal notation

demands 16 symbols, leaving us without enough single character numeric values to stand in for

all the values in each column. So, how do we cram 16 values into each column? The solution

was to substitute the letters A through F for the numbers 10 through 15. So, we can represent

10110101 (the decimal number 181) as "B5" in hexadecimal notation. Using hex, we can notate

values from 0-255 as 00 to FF (using either lower- or upper-case letters; it doesn’t matter).

It’s hard to tell if a number is decimal or hexadecimal just by looking at it: if you see "37", does

that equate to 37 ("37" in decimal) or a decimal 55 ("37" in hexadecimal)? To get around this

problem, two common notations are used to indicate hexadecimal numbers. The first is the suffix

of a lower-case "h." The second is the

prefix of "0x." So "37 in

hexadecimal," "37h" and "0x37" all

mean the same thing.

The ASCII Code Chart at right can be

used to express ASCII characters in

hex. The capital letter “G” is encoded

6 Don’t be put off by the math. The biggest impediment to getting through the encoding basics is the voice in your
head screaming, “I SHOULDN’T HAVE TO KNOW ANY OF THIS!!” Ignore that voice. It’s wrong.

14

as the hex value of 47 (i.e., row 4, column 7), so “E-Discovery” in hex encodes as:

0x45 2D 44 69 73 63 6F 76 65 72 797

That’s easier than:

0100010100101101010001000110100101110011011000110110111101110110011001010111

001001111001?

Base64

Internet e-mail was born in 1971, when a researcher named Ray Tomlinson sent a message to

himself using the “@” sign to distinguish the addressee from the

machine. Tomlinson didn’t remember the message transmitted in

that historic first e-mail but speculated that it was probably

something like “qwertyuiop.” So, not exactly, “Mr. Watson, come

here. I need you," but then, Tomlinson didn’t know he was changing

the world. He was just killing time.

Also, back when the nascent Internet consisted of just four university

research computers, UCLA student Stephen Crocker originated the

practice of circulating proposed technical standards (or “protocols”

in geek speak) as publications called “Requests for Comments” or RFCs. They went via U.S. postal

mail because there was no such thing as e-mail. Ever after, proposed standards establishing the

format of e-mail were promulgated as numbered RFCs. So, when you hear an e-discovery vendor

mention “RFC5322 content,” fear not, it just means plain ol’ e-mail.

An e-mail is as simple as a postcard. Like the back-left side of a postcard, an e-mail has an area

called the message body reserved for the user's text message. Like a postcard's back right side,

we devote another area called the message header to information needed to get the card where

it's supposed to go and to transmittal data akin to a postmark.

We can liken the picture or drawing on the front of our postcard to an e-mail's attachment.

Unlike a postcard, we must convert e-mail attachments to letters and numbers for transmission,

enabling an e-mail to carry any type of electronic data — audio, documents, software, video —

not just pretty pictures.

7 The concept of byte order called Endianness warrants passing mention here. Computers store data in ways
compatible with their digital memory registers. In some systems, the most significant digit (byte) comes first and in
others, it’s last. This byte ordering determines whether a hexadecimal value is written as 37 or 73. A big-
endian ordering places the most significant byte first and the least significant byte last, while a little-endian ordering
does the opposite. Consider the hex number 0x1234, which requires at least two bytes to represent. In a big-endian
ordering they would be [0x12, 0x34], while in a little-endian ordering, the bytes are arranged [0x34, 0x12].

15

The key point is that everything in any e-mail is plain text, no matter what’s attached.

And by plain text, I mean the plainest English text, 7-bit ASCII, lacking even the diacritical

characters required for accented words in French or Spanish or any formatting capability. No

bold. No underline. No italics. It is text so simple that you can store a letter as a single byte of

data.

The dogged adherence to plain English text stems in part from the universal use of the Simple

Mail Transfer Protocol or SMTP to transmit e-mail. SMTP only supports 7-bit ASCII characters, so

sticking with SMTP maintained compatibility with older, simpler systems. Because it’s just text,

it’s compatible with any e-mail system invented in the last 50 years. Think about that the next

time you come across a floppy disk or CD and wonder how you’re going to read it.

How do you encode a world of complex digital content into plain text without losing anything?

The answer is an encoding scheme called Base64, which substitutes 64 printable ASCII characters

(A–Z, a–z, 0–9, + and /) for any binary data or for foreign characters, like Cyrillic or Chinese, that

can be represented by the Latin alphabet.

Base64 is brilliant and amazingly simple. Since all digital data is stored as bits, and six bits can be

arranged in 64 separate ways, you need just 64 alphanumeric characters to stand in for any six

bits of data. The 26 lower case letters, 26 upper case letters and the numbers 0-9 give you 62

stand-ins. Throw in a couple of punctuation marks—say the forward slash and plus sign—and you

have all the printable ASCII characters you need to represent any binary content in six bit chunks.

Though the encoded data takes up roughly a third more space than its binary source, now any

mail system can hand off any attachment. Once again, it’s all just numbers.

Why Care about Encoding?

All this code page and Unicode stuff matters because of the vital role that electronic search plays

in e-discovery. If we index an information item for search using the wrong character set, the

information in the item won’t be extracted, won’t become part of the index and, accordingly,

won’t be found even when the correct search terms are run. Many older search tools and

electronic records are not Unicode-compliant. Worse, because the content may include a

smattering of ASCII text, an older search tool may conclude it’s encountered a document encoded

with Latin-1 and may fail to flag the item as having failed to index. In short, encoding issues carry

real-world consequences, particularly when foreign language content is in the collection. If you

aren’t aware of the limits of the processing tools you, your opponents or service providers use,

you can’t negotiate successful protocols. What you don’t know can hurt you.

The many ways in which data is encoded—and the diverse ways in which collection, processing

and search tools identify the multifarious encoding schemes—lie at the heart of significant

challenges and costly errors in e-discovery. It’s easy to dismiss these fundamentals of

16

information technology as too removed from litigation to be worth the effort to explore them;

but, understanding encoding and the role it plays play in processing, indexing and search will help

you realize the capabilities and limits of the tools you, your clients, vendors and opponents use.

Let’s look at these issues and file formats through the lens of a programmer making decisions

about how a file should function.

Hypothetical: TaggedyAnn

Ann, a programmer, must create a tool to generate nametags for attendees at an upcoming

continuing legal education program. Ann wants her tool to support different label stock and

multiple printers, fonts, font sizes and salutations. It will accept lists of pre-registrants as well as

create name tags for those who register onsite. Ann will call her tool TaggedyAnn. TaggedyAnn

has never existed, so no computer operating system “knows” what to do with TaggedyAnn data.

Ann must design the necessary operations and associations.

Remembering our mantra, “ESI is just numbers,” Ann must lay out those numbers in the data

files so that the correct program—her TaggedyAnn program—will be executed against

TaggedyAnn data files, and she must structure the data files so that the proper series of numbers

will be pulled from the proper locations and interpreted in the intended way. Ann must develop

the file format.

A file format establishes the way to encode and order data for storage in the file. Ideally, Ann

will document her file format as a published specification, a blueprint for the file’s construction.

That way, anyone trying to develop applications to work with Ann’s files will know what goes

where and how to interpret the data. But Ann may never get around to writing a formal file

specification or, if she believes her file format to be a trade secret, Ann may decide not to reveal

its structure publically. In that event, others seeking to read TaggedyAnn files must reverse

engineer the files to deduce their structure and fashion a document filter that can accurately

parse and view the data.

In terms of complexity, file format specifications run the gamut. Ann’s format will likely be

simple—perhaps just a page or two—as TaggedyAnn supports few features and functions. By

contrast, the published file specifications for the binary forms of Microsoft Excel, PowerPoint and

Word files run to 1,124, 649 and 575 pages, respectively. Microsoft’s latest file format

specification for the .PST file that stores Outlook e-mail occupies 192 pages. Imagine trying to

reverse engineer such complexity without a published specification! For a peek into the hidden

structure of a Word .DOCX file, see Illustration 2: Anatomy of a Word DOCX File.

File Type Identification

In the context of the operating system, Ann must link her program and its data files through

various means of file type identification.

https://go.microsoft.com/fwlink/?LinkId=119249

17

File type identification using binary file signatures and file extensions is an essential early step in

e-discovery processing. Determining file types is a necessary precursor to applying the

appropriate document filter to extract contents and metadata for populating a database and

indexing files for use in an e-discovery review platform.

File Extensions

Because Ann is coding her tool from scratch and her data files need only be intelligible to her

program, she can structure the files any way she wishes, but she must nevertheless supply a way

that computer operating systems can pair her data files with only her executable program. Else,

there’s no telling what program might run. Word can open a PDF file, but the result may be

unintelligible.

Filename extensions or just “file extensions” are a means to identify the contents and purpose of

a data file. Though executable files must carry the file extension .EXE, any ancillary files Ann

creates can employ almost any three-letter or -number file extension Ann desires so long as her

choice doesn’t conflict with one of the thousands of file extensions already in use. That means

that Ann can’t use .TGA because it’s already associated with Targa graphics files, and she can’t

use .TAG because that signals a DataFlex data file. So, Ann settles on .TGN as the file extension

for TaggedyAnn files. That way, when a user loads a data file with the .TGN extension, Windows

can direct its contents to the TaggedyAnn application and not to another program that won’t

correctly parse the data.

Binary File Signatures

But Ann needs to do more. Not all operating systems employ file extensions, and because

extensions can be absent or altered, file extensions aren’t the most reliable way to denote the

purpose or content of a file. Too, file names and extensions are system metadata, so they are

not stored inside the file. Instead, computers store file extensions within the file table of the

storage medium’s file system. Accordingly, Ann must fashion a unique binary header signature

that precedes the contents of each TaggedyAnn data file in order that the contents are

identifiable as TaggedyAnn data and directed solely to the TaggedyAnn program for execution.

A binary file signature (also called a magic number) will typically occupy the first few bytes of a

file’s contents. It will always be hexadecimal values; however, the hex values chosen may

correspond to an intelligible alphanumeric (ASCII) sequence. For example, PDF document files

begin 25 50 44 46 2D, which is %PDF- in ASCII. Files holding Microsoft tape archive data begin 54

41 50 45, translating to TAPE in ASCII. Sometimes, it’s a convoluted correlation, e.g., Adobe

Shockwave Flash files have a file extension of SWF, but their file signature is 46 57 53,

corresponding to FWS in ASCII. In other instances, there is no intent to generate a meaningful

ASCII word or phrase using the binary header signatures; they are simply numbers in hex. For

18

example, the header signature for a JPG image is FF D8 FF E0 which translates to the gibberish

ÿØÿà in ASCII.

Binary file signatures often append characters that signal variants of the file type or versions of

the associated software. For example, JPG images in the JPEG File Interchange Format (JFIF) use

the binary signature FF D8 FF E0 00 10 4A 46 49 46 or ÿØÿà JFIF in ASCII. A JPG image in the JPEG

Exchangeable Image File Format (Exif, commonly used by digital cameras) will start with the

binary signature FF D8 FF E1 00 10 45 78 69 66 or ÿØÿá Exif in ASCII.

Ann peruses the lists of file signatures available online and initially thinks she will use Hex 54 41

47 21 as her binary header signature because no one else appears to be using that signature and

it corresponds to TAG! in ASCII.

But, after reflecting on the volume of highly-compressible text that will comprise the program’s

data files, Ann instead decides to store the contents in a ZIP-compressed format, necessitating

that the binary header signature for TaggedyAnn’s data files be 50 4B 03 04, PK.. in ASCII. All files

compressed with ZIP use the PK.. header signature because Phil Katz, the programmer who wrote

the ZIP compression tool, chose to flag his file format with his initials.

How can Ann ensure that only TaggedyAnn opens these files and they are not misdirected to an

unzipping (decompression) program? Simple. Ann will use the .TGN extension to prompt

Windows to load the file in TaggedyAnn and TaggedyAnn will then read the PK.. signature and

unzip the contents to access the compressed contents.

But, what about when an e-discovery service provider processes the TaggedyAnn files with the

mismatched file extensions and binary signatures? Won’t that throw things off? It could. We’ll

return to that issue when we cover compound files and recursion. First, let’s touch on file

structures.

File Structure

Now, Ann must decide how she will structure the data within her files. Once more, Ann’s files

need only be intelligible to her application, so she is unconstrained in her architecture. This point

becomes important as the differences in file structure are what make processing and indexing

essential to electronic search. There are thousands of different file types, each structured in

idiosyncratic ways. Processing normalizes their contents to a common searchable format.

Some programmers dump data into files in so consistent a way that programs retrieve particular

data by offset addressing; that is, by beginning retrieval at a specified number of bytes from the

19

start of the file (offset from the start) and retrieving a specified extent of data from that offset

(i.e., grabbing X bytes following the specified offset).

Offset addressing could make it hard for Ann to add new options and features, so she may prefer

to implement a chunk- or directory-based structure. In the first approach, data is labeled within

the file to indicate its beginning and end or it may be tagged (“marked up”) for identification.

The program accessing the data simply traverses the file seeking the tagged data it requires and

grabs the data between tags. There are many ways to implement a chunk-based structure, and

it’s probably the most common file structure. A directory-based approach constructs a file as a

small operating environment. The directory keeps track of what’s in the file, what it’s called and

where it begins and ends. Examples of directory-based formats are ZIP archive files and Microsoft

Office files after Office 2007. Ann elects to use a mix of both approaches. Using ZIP entails a

directory and folder structure, and she will use tagged, chunked data within the compressed

folder and file hierarchy.

Data Compression

Many common file formats and containers are compressed, necessitating that e-discovery

processing tools be able to identify compressed files and apply the correct decompression

algorithm to extract contents.

Compression is miraculous. It makes modern digital life possible. Without compression, we

wouldn’t have smart phones, digitized music, streaming video or digital photography. Without

compression, the web would be a different, duller place.

Compression uses algorithms to reduce the space required to store and the bandwidth required

to transmit electronic information. If the algorithm preserves all compressed data, it’s termed

“lossless compression.” If the algorithm jettisons data deemed expendable, it’s termed “lossy

compression.”

JPEG image compression is lossy compression, executing a tradeoff between image quality and

file size. Not all the original photo’s graphical information survives JPEG compression. Sharpness

and color depth are sacrificed, and compression introduces distortion in the form of rough

margins called “jaggies.” We likewise see a loss of fidelity when audio or video data is

compressed for storage or transmission (e.g., as MPEG or MP3 files). The offsetting benefit is

that the smaller file sizes facilitate streaming video and storing thousands of songs in your pocket.

In contrast, file compression algorithms like ZIP are lossless; decompressed files perfectly match

their counterparts before compression. Let’s explore how that’s done.

20

One simple approach is Run-Length Encoding. It works especially well for images containing

consecutive, identical data elements, like the ample white space of a fax transmission. Consider

a black and white graphic where each pixel is either B or W; for example, the image of the

uppercase letter “E,” below left:

WWBBBBBWW

WWBBWWWWW

WWBBBBWWW

WWBBWWWWW

WWBBBBBWW

The image at left requires 45 characters

but we can write it in 15 fewer

characters by adding a number

describing each sequence or “run,“ i.e.,

2 white pixels, 5 black, 2 white.

2W5B2W

2W2B5W

2W4B3W

2W2B5W

2W5B2W

We’ve compressed the data by a third.

Refining our run-length compression, we

substitute a symbol (|) for each 2W and now

need just 23 characters to describe the

graphic, like so:

|5B|

|2B5W

|4B3W

|2B5W

|5B|

We’ve compressed the data by

almost half but added overhead: we

must now supply a dictionary defining

|=2W.

Going a step further, we swap in symbols for

5B (\), 2B (/) and 5W (~), like so:

|\|

|/~

|4B3W

|/~

|\|

It takes just 17 characters to serve as

a compressed version of the original

45 characters by adding three more

symbols to our growing dictionary.

As we apply this run-length encoding to more and more data, we see improved compression

ratios because we can apply symbols already in use and don’t need to keep adding new symbols

to our dictionary for each swap.

ZIP employs a lossless compression algorithm called DEFLATE, which came into use in 1993.

DEFLATE underpins both ZIP archives and the PNG image format; and thanks to its efficiency and

being free to use without license fees, DEFLATE remains the most widely used compression

algorithm in the world.

DEFLATE combines two compression techniques, Huffman Coding and a dictionary technique

called Lempel–Ziv–Storer–Szymanski (LZSS). Huffman Coding analyzes data to determine

frequency of occurrence, generating a probability tree supporting assignment of the shortest

symbols to the most recurrences. LZSS implements pointers to prior occurrences (back-

21

references). Accordingly, DEFLATE achieves compression by the assignment of symbols based on

frequency of use and by the matching and replacement of duplicate strings with pointers.

Tools for processing files in e-discovery must identify compressed files and apply the correct

algorithm to unpack the contents. The decompression algorithm locates the tree and symbols

library and retrieves and parses the directory structure and stored metadata for the contents.

Identification on Ingestion
Remember Programmer Ann and her struggle to select a TaggedyAnn file extension and

signature? Now, those decisions play a vital role in how an e-discovery processing tool extracts

text and metadata. If we hope to pull intelligible data from a file or container, we must first

reliably ascertain the file’s structure and encoding. For compressed files, we must apply the

proper decompression algorithm. If it’s an e-mail container format, we must apply the proper

encoding schema to segregate messages and decode all manner of attachments. We must treat

image files as images, sound files as sounds and so on. Misidentification of file types guarantees

failure.

The e-discovery industry relies upon various open source and commercial file identifier tools.

These tend to look first to the file’s binary header for file identification and then to the file’s

extension and name. If the file type cannot be determined from the signature and metadata, the

identification tool may either flag the file as unknown (an “exception”) or pursue other

identification methods as varied as byte frequency analysis (BFA) or the use of specialty filetype

detection tools designed to suss out characteristics unique to certain file types, especially

container files. Identifiers will typically report both the apparent file type (from metadata, i.e.,

the file’s name and extension) and the actual file type. Inconsistencies between these may

prompt special handling or signal spoofing with malicious intent.

The table below sets out header signatures aka “magic numbers” for common file types:

File Type Extension Hex Signature ASCII Notes

ZIP Archive ZIP 50 4B 03 04 PK..

MS Office DOCX

XLSX

PPTX

50 4B 03 04 PK.. Compressed XML files

Outlook mail PST 21 42 44 4E 42 !BDN

Outlook message MSG D0 CF 11 E0 A1 B1 1A E1

Executable file EXE 4D 5A MZ For Mark Zbikowski, who said,

“when you're writing the linker,

you get to make the rules.”

22

File Type Extension Hex Signature ASCII Notes

Adobe PDF PDF 25 50 44 46 %PDF

PNG Graphic PNG 89 50 4E 47 .PNG

VMWare Disk file VMDK 4B 44 4D 56 KDMV

WAV audio file WAV 52 49 46 46 RIFF

Plain Text file TXT none none Only binary files have signatures

Media (MIME) Type Detection

File extensions are largely unique to Microsoft operating systems. Systems like Linux and Mac

OS X don’t rely on file extensions to identify file types. Instead, they employ a file identification

mechanism called Media (MIME) Type Detection. MIME, which stands for Multipurpose

Internet Mail Extensions, is a seminal Internet standard that enables the grafting of text

enhancements, foreign language character sets (Unicode) and multimedia content (e.g., photos,

video, sounds and machine code) onto plain text e-mails. Virtually all e-mail travels in MIME

format.

The ability to transmit multiple file types via e-mail created a need to identify the content type

transmitted. The Internet Assigned Numbers Authority (IANA) oversees global Internet

addressing and defines the hierarchy of media type designation. These hierarchical designations

for e-mail attachments conforming to MIME encoding came to be known as MIME types. Though

the use of MIME types started with e-mail, operating systems, tools and web browsers now

employ MIME types to identify media, prompting the IANA to change the official name from

MIME Types to Media Types.

Media types serve two important roles in e-discovery processing. First, they facilitate the

identification of content based upon a media type declaration found in, e.g., e-mail attachments

and Internet publications. Second, media types serve as standard classifiers for files after

identification of content. Classification of files within a media type taxonomy simplifies culling

and filtering data in ways useful to e-discovery. While it’s enough to specify “document,”

“spreadsheet” or “picture” in a Request for Production, e-discovery tools require a more granular

breakdown of content. Tools must be able to distinguish a Word binary .DOC format from a Word

XML .DOCX format, a Windows PowerPoint file from a Mac Keynote file and a GIF from a TIFF.

Media Type Tree Structure

Media types follow a path-like tree structure under one of the following standard types:

application, audio, image, text and video (collectively called discrete media types) and message

23

and multipart (called composite media types). These top-level media types are further defined

by subtype and, optionally, by a suffix and parameter(s), written in lowercase.

Examples of file type declarations for common file formats:

Note: File types prefixed by x- are not IANA. Those prefixed by vnd. are vendor-specific formats.

Application

Word .DOC: application/msword

Word .DOCX: application/vnd.openxmlformats-officedocument.wordprocessingml.document

Adobe PDF: application/pdf (.pdf)

PowerPoint .PPT: application/vnd.ms-powerpoint

PowerPoint .PPTX: application/vnd.openxmlformats-officedocument. presentationml.

presentation

Slack file: application/x-atomist-slack-file+json

.TAR archive: application/x-tar

Excel .XLS: application/vnd.ms-excel

Excel .XLSX: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet

ZIP archive .ZIP: application/zip

Audio

.MID: audio/x-midi

.MP3: audio/mpeg

.MP4: audio/mp4

.WAV: audio/x-wav

Image

.BMP: image/bmp

.GIF: image/gif

.JPG: image/jpeg

.PNG: image/png

.TIF: image/tiff

Text (Typically accompanied by a charset parameter identifying the character encoding)

.CSS: text/css

.CSV: text/csv

.HTML: text/html

.ICS: text/calendar

24

.RTF: text/richtext

.TXT text/plain

Video

.AVI video/x-msvideo

.MOV: video/quicktime

.MP4: video/mp4

.MPG: video/mpeg

When All Else Fails: Octet Streams and Text Stripping

When a processing tool cannot identify a file, it may flag the file as an exception and discontinue

processing contents; but, the greater likelihood is that the tool will treat the unidentifiable file as

an octet stream and harvest or “strip out” whatever text or metadata it can identify within the

stream. An octet stream is simply an arbitrary sequence or “stream” of data presumed to be

binary data stored as eight-bit bytes or “octets.” So, an octet stream is anything the processor

fails to recognize as a known file type.

In e-discovery, the risk of treating a file as an octet stream and stripping identifiable text is that

the file’s content is likely encoded, such that whatever plain text is stripped and indexed doesn’t

fairly mirror relevant content. However, because some text was stripped, the file may not be

flagged as an exception requiring special handling; instead, the processing tool records the file as

successfully processed notwithstanding the missing content.

Data Extraction and Document Filters
If ESI were like paper, you could open each item in its associated program (its native application),

review the contents and decide whether the item is relevant or privileged. But, ESI is much

different than paper documents in crucial ways:

• ESI collections tend to be exponentially more voluminous than paper collections;

• ESI is stored digitally, rendering it unintelligible absent electronic processing;

• ESI carries metainformation that is always of practical use and may be probative evidence;

• ESI is electronically searchable while paper documents require laborious human scrutiny;

• ESI is readily culled, filtered and deduplicated, and inexpensively stored and transmitted;

• ESI and associated metadata change when opened in native applications;

These and other differences make it impractical and risky to approach e-discovery via the

piecemeal use of native applications as viewers. Search would be inconsistent and slow, and

25

deduplication impossible. Too, you’d surrender all the benefits of mass tagging, filtering and

production. Lawyers who learn that native productions are superior to other forms of production

may mistakenly conclude that native production suggests use of native applications for review.

Absolutely not! Native applications are not suited to e-discovery, and you shouldn’t use them

for review. E-discovery review tools are the only way to go.

To secure the greatest benefit of ESI in search, culling and review, we process ingested files to

extract their text, embedded objects, and metadata. In turn, we normalize and tokenize

extracted contents, add them to a database and index them for efficient search. These

processing operations promote efficiency but impose penalties in terms of reduced precision and

accuracy. It’s a tradeoff demanding an informed and purposeful balancing of benefits and costs.

Returning to Programmer Ann and her efforts to fashion a new file format, Ann had a free hand

in establishing the structural layout of her TaggedyAnn data files because she was also writing

the software to read them. The ability to edit data easily is a hallmark of computing; so,

programmers design files to be able to grow and shrink without impairing updating and retrieval

of their contents. Files hold text, rich media (like graphics and video), formatting information,

configuration instructions, metadata and more. All that disparate content exists as a sequence

of hexadecimal characters. Some of it may reside at fixed offset addresses measured in a static

number of bytes from the start of the file. But because files must be able to grow and shrink,

fixed offset addressing alone won’t cut it. Instead, files must supply dynamic directories of their

contents or incorporate tags that serve as signposts for navigation.

When navigating files to extract contents, it’s not enough to know where the data starts and

ends, you must also know how the data’s encoded. Is it ASCII text? Unicode? JPEG? Is it a date

and time value or perhaps a bit flag where the numeric value serves to signal a characteristic or

configuration to the program?

There are two broad approaches used by processing tools to extract content from files. One is

to use the Application Programming Interface (API) of the application that created the file. The

other is to turn to a published file specification or reverse engineer the file to determine where

the data sought to be extracted resides and how it’s encoded.

A software API allows “client” applications (i.e., other software) to make requests or “calls” to

the API “server” to obtain specific information and to ask the server to perform specific functions.

Much like a restaurant, the client can “order” from a menu of supported API offerings without

knowing what goes on in the kitchen, where the client generally isn’t welcome to enter. Like a

restaurant with off-menu items, the API may support undocumented calls intended for a limited

pool of users.

26

For online data reposing in sites like Office 365, Dropbox or OneDrive, there’s little choice but to

use an API to get to the data; but for data in local files, using a native application’s API is

something of a last resort because APIs tend to be slow and constraining. Not all applications

offer open APIs, and those that do won’t necessarily hand off all data needed for e-discovery.

For many years, a leading e-discovery processing tool required purchasers to obtain a “bootleg”

copy of the IBM/Lotus Notes mail program because the secure structure of Notes files frustrated

efforts to extract messages and attachments by any means but the native API.

An alternative to the native application API is the use of data extraction templates called

Document Filters. Document filters lay out where content is stored within each filetype and how

that content is encoded and interpreted. Think of them as an extraction template. Document

filters can be based on a published file specification or they can be painstakingly reverse

engineered from examples of the data—a terrifically complex process that produces outcomes

of questionable accuracy and consistency. Because document filters are challenging to construct

and keep up to date for each of the hundreds of file types seen in e-discovery, few e-discovery

processors build their own library of document filters. Instead, they turn to a handful of

commercial and open source filters.

The leading commercial collection of document filters is Oracle’s Outside In, which its publisher

describes as “a suite of software development kits (SDKs) that provides developers with a

comprehensive solution to extract, normalize, scrub, convert and view the contents of 600

unstructured file formats.” Outside In quietly serves as the extraction and viewer engine behind

many e-discovery review tools, a fact the sellers of those tools are often reluctant to concede;

but, I suppose sellers of the Lexus ES aren’t keen to note it shares its engine, chassis and most

parts with the cheaper Toyota Avalon.

Aspose Pty. Ltd., an Australian concern, licenses libraries of commercial APIs, enabling software

developers to read and write to, e.g., Word documents, Excel spreadsheets, PowerPoint

presentations, PDF files and multiple e-mail container formats. Aspose tools can both read from

and write to the various formats, the latter considerably more challenging.

Hyland Software’s Document Filters is another developer’s toolkit that facilitates file

identification and content extraction for 500+ file formats, as well as support for OCR, redaction

and image rendering. Per Hyland’s website, its extraction tools power e-discovery products from

Catalyst and Reveal Software.

A fourth commercial product that lies at the heart of several e-discovery and computer forensic

tools (e.g., Relativity, LAW, Ringtail aka Nuix Discover and Access Data’s FTK) is dtSearch, which

serves as both content extractor and indexing engine.

https://www.oracle.com/technetwork/middleware/content-management/oit-all-085236.html
https://www.aspose.com/
https://www.hyland.com/en/platform/product-suite/document-filters
https://dtsearch.com/

27

On the open source side, Apache’s Tika is a free toolkit for extracting text and metadata from

over a thousand file types, including most encountered in e-discovery. Tika was a subproject of

the open source Apache Lucene project, Lucene being an indexing and search tool at the core of

several commercial e-discovery tools.

Beyond these five toolsets, the wellspring of document filters and text extractors starts to dry

up, which means a broad swath of commercial e-discovery tools relies upon a tiny complement

of text and metadata extraction tools to build their indices and front-end their advanced

analytics.

In fact, most e-discovery tools I’ve seen in the last 15 years are proprietary wrappers around code

borrowed or licensed from common sources for file identifiers, text extractors, OCR, normalizers,

indexers, viewers, image generators and databases. Bolting these off-the-shelf parts together to

deliver an efficient workflow and user-friendly interface is no mean feat.

But as we admire the winsome wrappers, we must remember that these products share the same

DNA in spite of marketing efforts suggesting “secret sauces” and differentiation. More to the

point, products built on the same text and metadata extractor share the same limitations and

vulnerabilities as that extractor.

By way of example, in 2018, Cisco’s Talos Intelligence Group reported a serious security

vulnerability in Hyland Software’s Document Filters. Presumably, this vulnerability impacted

implementations by e-discovery platforms Catalyst and Reveal Software. This isn’t an isolated

example, as security vulnerabilities have been reported in the text extraction products from, inter

alia, Apache Tika, Aspose, and Oracle Outside In.

Security vulnerabilities are common across the software industry, and these reports are no more

cause for alarm than any other circumstance where highly confidential and privileged client data

may be compromised. But they underscore that the integrity of e-discovery products isn’t simply

a function of the skill of the e-discovery toolmaker and service provider. Developers build e-

discovery software upon a handful of processing and indexing products that, like the ingredients

in the food we eat and the origins of the products we purchase, ought to be revealed, not

concealed. Why? Because all these components introduce variables contributing to different,

and sometimes untoward, outcomes affecting the evidence.

Recursion and Embedded Object Extraction
Just as an essential task in processing is to correctly identify content and apply the right decoding

schema, a processing tool must extract and account for all the components of a file that carry

potentially responsive information.

Modern productivity files like Microsoft Office documents are rich, layered containers called

Compound Files. Objects like images and the contents of other file formats may be embedded

https://tika.apache.org/
https://blogs.cisco.com/security/talos/vulnerability-spotlight-hyland-perceptive-document-filters-multiple-vulnerabilites
https://blogs.cisco.com/security/talos/vulnerability-spotlight-hyland-perceptive-document-filters-multiple-vulnerabilites
https://www.cvedetails.com/vulnerability-list/vendor_id-45/product_id-35375/Apache-Tika.html
https://www.cvedetails.com/vulnerability-list/vendor_id-20353/Aspose.html
https://www.cvedetails.com/vulnerability-list/vendor_id-93/product_id-33178/Oracle-Outside-In-Technology.html

28

and linked within a compound file. Think of an Excel spreadsheet appearing as a diagram within

a Word document. Microsoft promulgated a mechanism supporting this functionality called OLE

(pronounced “o-lay” and short for Object Linking and Embedding). OLE supports dragging and

dropping content between applications and the dynamic updating of embedded content, so the

Excel spreadsheet embedded in a Word documents updates to reflect changes in the source

spreadsheet file. A processing tool must be able to recognize an OLE object and extract and

enumerate all of the embedded and linked content.

A MIME e-mail is also a compound document to the extent it transmits multipart content,

particularly encoded attachments. A processing tool must account for and extract every item in

the e-mail’s informational payload, recognizing that such content may nest like a Russian doll.

An e-mail attachment could be a ZIP container holding multiple Outlook .PST mail containers

holding e-mail collections that, in turn, hold attachments of OLE documents and other ZIP

containers! The mechanism by which a processing tool explores, identifies, unpacks and extracts

all embedded content from a file is called recursion. It’s crucial that a data extraction tool be

able to recurse through a file and loop itself to extract embedded content until there is nothing

else to be found.

Tika, the open source extraction toolset, classifies file structures in the following ways for

metadata extraction:

• Simple

• Structured

• Compound

• Simple Container

• Container with Text

Simple Document

A simple document is a single document contained in a single file. Some examples of simple

documents include text files and xml files. Any metadata associated with a simple document is

for the entire document.

Structured Document

Like simple documents, structured documents are single documents in single files. What makes

a structured document different is that the document has internal structure, and there is

metadata associated with specific parts of a document. For example, a PDF document has an

internal structure for representing each page of the PDF, and there may be metadata associated

with individual pages.

Compound Document

A compound document is a single document made up of many separate files, usually stored

inside of a single container. Examples of compound documents include the following:

29

• .doc (several named streams inside of an OLE file)

• .xlsx (several named xml files inside of a ZIP file)

Simple Container

A simple container is a container file that contains other files. The container itself does not

contain text but instead contains files that could be any document type. Examples of a simple

container include ZIP, tar, tar.gz, and tar.bz2.

Container with Text

Some container files have text of their own and also contain other files. Examples include the

following:

• an e-mail with attachments

• A .doc with embedded spreadsheets

Family Tracking and Unitization: Keeping Up with the Parts
As a processing tool unpacks the embedded components of compound and container files, it

must update the database with information about what data came from what file, a relationship

called unitization. In the context of e-mail, recording the relationship between a transmitting

message and its attachments is called family tracking: the transmitting message is the parent

object and the attachments are child objects. The processing tool must identify and preserve

metadata values applicable to the entire contents of the compound or container file (like system

metadata for the parent object) and embedded metadata applicable to each child object. One

of the most important metadata values to preserve and pair with each object is the object’s

custodian or source. Post-processing, every item in an e-discovery collection must be capable of

being tied back to an originating file at time of ingestion, including its prior unitization and any

parent-child relationship to other objects.

Exceptions Reporting: Keeping Track of Failures
It’s rare that a sizable collection of data will process flawlessly. There will almost always be

encrypted files that cannot be read, corrupt files, files in unrecognized formats or languages and

files requiring optical character recognition (OCR) to extract text. A great many documents are

not amenable to text search without special handling. Common examples of non-searchable

documents are faxes and scans, as well as TIFF images and Adobe PDF documents lacking a text

layer. A processing tool must track all exceptions and be capable of generating an exceptions

report to enable counsel and others with oversight responsibility to act to rectify exceptions by,

e.g., securing passwords, repairing or replacing corrupt files and running OCR against the files.

Exceptions resolution is key to a defensible e-discovery process.

Counsel and others processing ESI in discovery should broadly understand the exceptions

handling characteristics of their processing tools and be competent to make necessary

disclosures and answer questions about exceptions reporting and resolution. Exceptions are

30

exclusions—the evidence is missing; so, exceptions should be disclosed and must be defended. As

noted earlier, it’s particularly perilous when a processing tool defaults to text stripping an

unrecognized or misrecognized file because the tool may fail to flag a text-stripped file as an

exception requiring resolution. Just because a tool succeeds in stripping some text from a file

doesn’t mean that all discoverable content was extracted.

Lexical Preprocessing of Extracted Text
Computers are excruciatingly literal. Computers cannot read. Computers cannot understand

language in the way humans do. Instead, computers apply rules assigned by programmers to

normalize, tokenize, and segment natural language, all instances of lexical preprocessing—steps

to prepare text for parsing by other tools.

Normalization

ESI is numbers; numbers are precise. Variations in those numbers—however subtle to humans—

hinder a computer’s ability to equate information as humans do. Before a machine can

distinguish words or build an index, we must massage the streams of text spit out by the

document filters to ultimately increase recall; that is, to insure that more documents are

retrieved by search, even the documents we seek that don’t exactly match our queries.

Variations in characters that human beings readily overlook pose big challenges to machines. So,

we seek to minimize the impact of these variations through normalization. How we normalize

data and even the order in which steps occur affect our ability to query the data and return

correct results.

Character Normalization

Consider three characteristics of characters that demand normalization: Unicode equivalency,

diacriticals (accents) and case (capitalization).

Unicode Normalization

In our discussion of ASCII encoding, we established that each ASCII character has an assigned,

corresponding numeric value (e.g., a capital “E” is 0100 0101 in binary, 69 in decimal and Ox45

in hexadecimal). But linguistically identical characters encoded in Unicode may be represented

by different numeric values by virtue of accented letters having both precomposed and

composite references. That means that you can use an encoding specific to the accented letter

(a precomposed character) or you can fashion the character as a composite by pairing the

encoding for the base letter with the encoding for the diacritical. For example, the Latin capital

“E” with an acute accent (É) may be encoded as either U+00C9 (a precomposed Latin capital

31

letter E with acute accent) or as U+0045 (Latin capital letter E) + U+0301 (combining acute

accent). Both will appear as É.

Easy enough to grasp, but there are a lot of accented variants of Latin letters, e.g.:

Ĕ Ḝ Ȇ Ê Ê̄ Ê̌ Ề Ế Ể Ễ Ệ Ẻ Ḙ Ě Ɇ Ė Ė ́ Ė̃ Ẹ Ë È È̩ Ȅ É É ̩ Ē Ḕ Ḗ Ẽ Ḛ Ę Ę ́ Ę̃ Ȩ E̩ ᶒ[

Surely, we don’t want to have to account for every variation in which a character can be encoded

in Unicode when searching in e-discovery! To obviate that burden, the Unicode Consortium

promulgates normalization algorithms that produce a consistent (“normalized”) encoding for

each identical character. One version of the algorithm reduces all identical characters to a

composed version and another reduces all to a decomposed (composite) version. In e-discovery,

we often seek to strip accents so see more of the latter.

Diacritical Normalization

Unicode normalization serves to ensure that the same canonical character is encoded in a

consistent way. But often—especially in the United States—we want accented characters to be

searchable whether a diacritical is employed or not. This requires normalizing the data to forge

a false equivalency between accented characters and their non-accented ASCII counterparts. So,

if you search for “resume” or “cafe,” you will pick up instances of “resumé” and “café.” As well,

we must normalize ligatures like the German Eszett (ß) seen in the word “straße,” or “street.”

The major processing tools offer filters that convert alphabetic, numeric, and symbolic Unicode

characters which are not in the first 127 ASCII characters (the "Basic Latin" Unicode block) into

their reasonable ASCII equivalents, if any. Lucene and Elasticsearch offer “ASCIIFolding” filters

for this. dtSearch strips diacritics by default when it creates an index, but indices can optionally

be made accent-sensitive by re-indexing.

Case Normalization

The Latin alphabet is bicameral, meaning it employs upper- and lower-case letters to enhance

meaning. [The terms upper- and lower-case derive from the customary juxtaposition of the

shallow drawers or “cases” that held movable type for printing presses.] By contrast, languages

such as Chinese, Arabic and Hebrew are unicameral and use no capitalization. Because people

capitalize indiscriminately—particularly in e-mail and messaging—most often we want search

queries to be case-insensitive such that DOE, Doe and doe all return the same hits. Other times,

the ability to limit a search to a case-specific query is advantageous, such as by searching just

DOE when your interest is the Department of Energy and search precision is more important than

recall.

32

Just as processing tools can be configured to “fold” Unicode characters to ASCII equivalents, they

can fold all letters to their upper- or lower-case counterparts, rendering an index that is case-

insensitive. Customarily, normalization of case will require specification of a default language

because of different capitalization conventions attendant to diverse cultures.

Impact of Normalization on Discovery Outcomes

Although all processing tools draw on a handful of filters and algorithms for these and other

normalization processes, processors don’t implement normalization in the same sequence or

with identical default settings. Accordingly, it’s routine to see tools produce varying outcomes in

culling and search because of differences in character normalization. Whether these differences

are material or not depends upon the nature of the data and the inquiry; but any service provider

and case manager should know how their tool of choice normalizes data.

In the sweep of a multi-million document project, the impact of normalization might seem trivial.

Yet character normalization affects the whole collection and plays an outsize role in what’s

filtered and found. It’s an apt reminder that a good working knowledge of processing equips e-

discovery professionals to “normalize” expectations, especially expectations as to what data will

be seen and searchable going forward. The most advanced techniques in analytics and artificial

intelligence are no better than what emerges from processing. If the processing is off, it’s fancy

joinery applied to rotten wood.

Lawyers must fight for quality before review. Sure, review is the part of e-discovery most lawyers

see and understand, so the part many fixate on. As well, review is the costliest component of e-

discovery and the one with cool tools. But here’s the bottom line: The most sophisticated MRI

scanner won’t save those who don’t survive the trip to the hospital. It’s more important to have

triage that gets people to the hospital alive than the best-equipped emergency room. Collection

and processing are the EMTs of e-discovery. If we don’t pay close attention to quality,

completeness and process before review, review won’t save us.

33

Time Zone Normalization
You needn’t be an Einstein of e-discovery to appreciate that time is relative. Parsing a message

thread, it’s common to see e-mails from Europe to

the U.S. prompt replies that, at least according to

embedded metadata, appear to precede by hours

the messages they answer. Time zones and

daylight savings time both work to make it difficult

to correctly order documents and

communications on a consistent timeline. So, a

common processing task is to normalize date and

time values according to a single temporal

baseline, often Coordinated Universal Time

(UTC)—essentially Greenwich Mean Time—or to

any other time zone the parties choose. The

differential between the source time and UTC

offset may then be expressed as plus or minus the

numbers of hours separating the two (e.g., UTC-0500 to denote five hours earlier than UTC).

Parsing and Tokenization
To this point, we’ve focused on efforts to identify a file’s format, then extract its content and

metadata—important tasks, because if you don’t get the file’s content out and properly decoded,

you’ve nearly nothing to work with. But, getting data out is just the first step. Now, we must

distill the extracted content into the linguistic components that serve to convey the file’s

informational payload; that is, we need to isolate the words within the documents and construct

an index of those words to allow us to instantly identify or exclude files based on their lexical

content.

There’s a saying that anything a human being can do after age five is easy for a computer, but

mastering skills humans acquire earlier is hard. Calculate pi to 31 trillion digits? Done! Read a

Dr. Seuss book? Sorry, no can do.

Humans are good at spotting linguistic units like words and sentences from an early age, but

computers must identify lexical units or “tokens” within extracted and normalized character

strings, a process called “tokenization.” When machines search collections of documents and

data for keywords, they don’t search the extracted text of the documents or data for matches;

instead, they consult an index of words built from extracted text. Machines cannot read; instead,

computers identify “words” in documents because their appearance and juxtaposition meet

certain tokenization rules. These rules aren’t uniform across systems or software. Many indices

simply don’t index short words (e.g., two-letter words, acronyms and initializations). None index

single letters or numbers.

34

Tokenization rules also govern such things as the handling of punctuated terms (as in a compound

word like “wind-driven”), capitalization/case (will a search for “roof” also find “Roof?”), diacritical

marks (will a search for “Rene” also find “René?”) and numbers and single letters (will a search

for “Clause 4.3” work? What about a search for “Plan B?”). Most people simply assume these

searches will work. Yet, in many e-discovery search tools, they don’t work as expected or don’t

work at all.

So, how do you train a computer to spot sentences and words? What makes a word a word and

a sentence a sentence?

Languages based on Latin-, Cyrillic-, or Greek-based writing systems, such as English and

European languages, are “segmented;” that is, they tend to set off (“delimit”) words by white

space and punctuation. Consequently, most tokenizers for segmented languages base token

boundaries on spacing and punctuation. That seems a simple solution at first blush, but one

quickly complicated by hyphenated words, contractions, dates, phone numbers and

abbreviations. How does the machine distinguish a word-break hyphen from a true or lexical

hyphen? How does the machine distinguish the periods in the salutation “Mr.” or the

initialization “G.D.P.R” from periods which signal the ends of sentences? In the realm of medicine

and pharmacology, many words contain numbers, dashes and parentheses as integral parts. How

could you defend a search for Ibuprofen if you failed to also seek instances of (RS)-2-(4-(2-

methylpropyl)phenyl)propanoic acid?

Again, tokenization rules aren’t uniform across systems, software or languages. Some tools are

simply incapable of indexing and searching certain characters. These exclusions impact discovery

in material ways. Several years ago, after contentious motion practice, a court ordered the

parties to search a dataset using queries incorporating the term “20%.” No one was pleased to

learn their e-discovery tools were incapable of searching for the percentage sign.

You cannot run a query in Relativity including the percentage sign (%) because Relativity uses

dtSearch as an indexing tool and dtSearch has reserved the character “%” for another purpose.

This is true no matter how you tweak the settings because the % sign simply cannot be added to

the index and made searchable.8 When you run a search, you won’t be warned that the search

is impossible; you’ll simply get no hits on any query requiring the % sign be found.

8 There’s a clumsy workaround to this described in the Help section of Relativity’s website:
https://help.relativity.com/RelativityOne/Content/Recipes/Searching__Filtering__and_Sorting/Searching_for_sym
bols.htm; however, it doesn’t serve to make a percentage value searchable so much as permit a user to find a

https://help.relativity.com/RelativityOne/Content/Recipes/Searching__Filtering__and_Sorting/Searching_for_symbols.htm
https://help.relativity.com/RelativityOne/Content/Recipes/Searching__Filtering__and_Sorting/Searching_for_symbols.htm

35

Using dtSearch/Relativity as another example, you can specify the way to process hyphens at the

time an index is created, but you cannot change how hyphens are handled without re-indexing

the collection. The default setting is to treat hyphens as spaces, but there are four alternative

treatments.

From the dtSearch Help pages:

The dtSearch Engine supports four options for the treatment of hyphens when indexing

documents: spaces, searchable text, ignored, and "all three."

For most applications, treating hyphens as spaces is the best option. Hyphens are translated

to spaces during indexing and during searches. For example, if you index "first-class mail" and

search for "first class mail", "first-class-mail", or "first-class mail", you will find the phrase

correctly.

Values

HyphenSettings Value Meaning

dtsoHyphenAsIgnore index "first-class" as "firstclass"

dtsoHyphenAsHyphen index "first-class" as "first-class"

dtsoHyphenAsSpace index "first-class" as "first" and "class"

dtsoHyphenAll index "first-class" all three ways

…

The "all three" option has one advantage over treating hyphens as spaces: it will return a

document containing "first-class" in a search for "firstclass". Otherwise, it provides no benefit

over treating hyphens as spaces, and it has some significant disadvantages:

1. The "all three" option generates many extra words during indexing. For each pair of

words separated by a hyphen, six words are generated in the index.

2. If hyphens are treated as significant at search time, it can produce unexpected results in

searches involving longer phrases or words with multiple hyphens.

By default, dtSearch and Relativity treat all the following characters as spaces:

!"#$&'()*+,./:;<=>?@[\5c]^`{|}~

numeric value followed by any symbol; that is, you’d hit on 75%, but also 75! and 75#. Even this kludge requires
rebuilding all indices.

36

Although several of the characters above can be made searchable by altering the default setting

and reindexing the collection, the following characters CANNOT be made searchable in dtSearch

and Relativity: () * ? % @ ~ & : =

Stop Words

Some common “stop words” or “noise words” are excluded from an index when it’s compiled.

E-discovery tools typically exclude dozens or hundreds of stop words from indices. The table

below lists 123 English stop words excluded by default in dtSearch and Relativity:

Source: Relativity website, November 3, 2019

Relativity won’t index punctuation marks, single letters or numbers. Nuix Discovery (formerly

Ringtail) uses a similar English stop word list, except Nuix indexes the words “between,” “does,”

“else,” “from,” “his,” “make,” “no,” “so,” “to,” “use” and “want” and “does” where Relativity

won’t. Relativity indexes the words “an,” “even,” “further,” “furthermore,” “hi,” “however,”

“indeed,” “made,” “moreover,” “not” “or,” “over,” “she” and “thus” where Nuix won’t. Does it

make sense that both tools exclude “he” and “her,” and both include “hers,” but only Relativity

excludes “his?”

37

Tools built on the open source Natural Language Tool Kit won’t index 179 English stop words. In

other products, I’ve seen between 500 and 700 English stop words excluded. In one notorious

instance, the two words that made up the company’s own name were both stop words in their

e-discovery system. They literally could not find their own name (or other stop words in queries

they’d agreed to run)!

Remember, if it’s not indexed, it’s not searched. Putting a query in quotes won’t make any

difference. No warning messages appear when you run a query including stop words, so it’s the

obligation of those running searches to acknowledge the incapability of the search. “No hits” is

not the same thing as “no documents.” If a party or counsel knows that the systems or searches

used in e-discovery will fail to perform as expected, they should affirmatively disclose such

shortcomings. If a party or counsel is uncertain whether systems or searches work as expected,

they should find out by, e.g., running tests to be reasonably certain.

No system is perfect, and perfect isn’t the e-discovery standard. Often, we must adapt to the

limitations of systems or software. But we must know what a system can’t do before we can find

ways to work around its limitations or set expectations consistent with actual capabilities, not

magical thinking and unfounded expectations.

Building a Database and Concordance Index
This primer is about processing, and the database (and viewer) belong to the realm of review

tools and their features. However, a brief consideration of their interrelationship is useful.

The Database
At every step of processing, information derived from and about the items processed is

continually handed off to a database. As the system ingests each file, a record of its name, size

and system metadata values becomes part of the database. Sources—called “custodians” when

they are individuals—are identified and comprise database fields. The processor calculates hash

values and contributes them to the database. The tool identifies and extracts application

metadata values from the processed information items, including, inter alia, authoring data for

documents and subject, sender and recipient data for e-mail messages. The database also holds

pointers to TIFF or PDF page images and to extracted text. The database is where items are

enumerated, that is, assigned an item number that will uniquely identify each item in the

processed collection. This is an identifier distinct from any Bates numbers subsequently assigned

to items when produced.

The database lies at the heart of all e-discovery review tools. It’s the recipient of much of the

information derived from processing. But note, the database is not the index of text extracted

38

from the processed items. The concordance index, the database and a third component, the

document viewer, operate in so tightly coupled a manner that they seem like one.

A query of the index customarily triggers a return of information from the database about items

“hit” by the query, and the contents of those items are, in turn, depicted in the viewer, often

with hits highlighted. The perceived quality of commercial e-discovery review tools is a function

of how seamlessly and efficiently these discrete functional components integrate to form a ro-

bust and intuitive user interface and experience.

Much like the file identification and content extraction tools discussed, e-discovery tool develop-

ers tend not to code databases from scratch but build atop a handful of open source or commer-

cial database platforms. Notable examples are SQL Server and SQLite. Notwithstanding Hercu-

lean efforts of marketers to suggest differences, e-discovery tools tend to share the same or sim-

ilar “database DNA.” Users are none the wiser to the common foundations because the “back

end” of discovery tools (the program’s code and database operations layer) tends to be hidden

from users and wrapped in an attractive interface.

The Concordance Index
Though there was a venerable commercial discovery tool called Concordance (now, Cloudnine),

the small-c term “concordance” describes an alphabetical listing, particularly a mapping, of the

important words in a text. Historically, scholars spent years painstakingly constructing

concordances (or “full-text” indices) of Shakespeare’s works or the Bible by hand. In e-discovery,

software builds concordance indices to speed lexical search. While it’s technically feasible to

keyword search all documents in a collection, one after another (so-called “serial search”), it’s

terribly inefficient.9

Instead, the universal practice in e-discovery is to employ software to extract the text from

information items, tokenize the contents to identify words and then construct a list of each

token’s associated document and location. Accordingly, text searches in e-discovery don’t search

the evidence; they only search a concordance index of tokenized text.

This is a crucial distinction because it means the quality of search in e-discovery is only as effective

as the index is complete.

Indexing describes the process by which the data being is processed to form a highly efficient

cross-reference lookup to facilitate rapid searching

Notable examples of concordance indexing tools are dtSearch, MarkLogic, Hyland Enterprise

Search and Apache Lucene along with the Lucene-related products, Apache SOLR and

Elasticsearch.

9 Computer forensic examiners still use serial searches when the corpus is modest and when employing Global
Regular Expressions (GREP searches) to identify patterns conforming to, e.g., social security or credit card numbers.

39

Lucene is an open source, inverted, full-text index. It takes the tokenized and normalized word

data from the processing engine and constructs an index for each token (word). It’s termed an

“inverted index” because it inverts a page-centric data structure (page>words) to a keyword-

centric data structure (words>pages)

The full-text index consists of a token identifier (the word), a listing of documents containing the

token and the position of the token within those documents (offset start- and end-positions, plus

the increment between tokens). Querying the index returns a listing of tokens and positions for

each. It may also supply an algorithmic

ranking of the results. Multiword queries

return a listing of documents where

there’s an intersection of the returns for

each token searched and found.

An advantage of tools like Lucene is their ability to be updated incrementally (i.e., new documents

can be added without the need to recreate a single, large index).

Culling and Selecting the Dataset
Processing is not an end but a means by which potentially responsive information is exposed,

enumerated, normalized and passed on for search, review and production. Although much culling

and selection occurs in the search and review phase, the processing phase is an opportunity to

reduce data volumes by culling and selecting by defensible criteria.

Now that the metadata is in a database and the collection has been made text searchable by

creation of a concordance index, it’s feasible to filter the collection by, e.g., date ranges, file

types, Internet domains, file size, custodian and other objective characteristics. We can also cull

the dataset by immaterial item suppression, de-NISTing and deduplication, all discussed infra.

The crudest but most common culling method is keyword and query filtering; that is, lexical

search. Lexical search and its shortcomings are beyond the scope of this processing primer, but

it should be clear by now that the quality of the processing bears materially on the ability to find

what we seek through lexical search. No search and review process can assess the content of

items missed or malformed in processing.

Immaterial Item Suppression

E-discovery processing tools must be able to track back to the originating source file for any

information extracted and indexed. Every item must be catalogued and enumerated, including

each container file and all contents of each container. Still, in e-discovery, we’ve little need to

search or produce the wrappers if we’ve properly expanded and extracted the contents. The

wrappers are immaterial items.

Immaterial items are those extracted for forensic completeness but having little or no intrinsic

value as discoverable evidence. Common examples of immaterial items include the folder

40

structure in which files are stored and the various container files (like ZIP, RAR files and other

containers, e.g., mailbox files like Outlook PST and MBOX, and forensic disk image wrapper files

like .E0x or .AFF) that tend to have no relevance apart from their contents.

Accordingly, it’s handy to be able to suppress immaterial items once we extract and enumerate

their contents. It’s pointless to produce a ZIP container if its contents are produced, and it’s

perilous to do so if some contents are non-responsive or privileged.

De-NISTing
De-NISTing is a technique used in e-discovery and computer forensics to reduce the number of

files requiring review by excluding standard components of the computer’s operating system

and off-the-shelf software applications like Word, Excel and other parts of Microsoft

Office. Everyone has this digital detritus on their systems—things like Windows screen saver

images, document templates, clip art, system sound files and so forth. It’s the stuff that comes

straight off the installation disks, and it’s just noise to a document review.

Eliminating this noise is called “de-NISTing” because those noise files are identified by matching

their cryptographic hash values (i.e., digital fingerprints, explanation to follow) to a huge list of

software hash values maintained and published by the National Software Reference Library, a

branch of the National Institute for Standards and Technology (NIST). The NIST list is free to

download, and pretty much everyone who processes data for e-discovery and computer forensic

examination uses it.

The value of de-NISTing varies according to the makeup of the collection. It’s very effective when

ESI has been collected indiscriminately or by forensic imaging of entire hard drives (including

operating system and executable files). De-NISTing is of limited value when the collection is

composed primarily of user-created files and messages as distinguished from system files and

executable applications. As a rule, the better focused the e-discovery collection effort (i.e., the

more targeted the collection), the smaller the volume of data culled via de-NISTing.

Cryptographic Hashing:

My students at the University of Texas School of Law and the Georgetown E-Discovery Training

Academy spend considerable time learning that all ESI is just a bunch of numbers. They muddle

through readings and exercises about Base2 (binary), Base10 (decimal), Base16 (hexadecimal)

and Base64 and also about the difference between single-byte encoding schemes (like ASCIII)

and double-byte encoding schemes (like Unicode). It may seem like a wonky walk in the weeds;

but it’s time well spent when the students snap to the crucial connection between numeric

http://www.nsrl.nist.gov/index.html

41

encoding and our ability to use math to cull, filter and cluster data. It’s a necessary precursor to

gaining Proustian “new eyes” for ESI.

Because ESI is just a bunch of numbers, we can use algorithms (mathematical formulas) to distill

and compare those numbers. Every student of electronic discovery learns about cryptographic

hash functions and their usefulness as tools to digitally fingerprint files in support of

identification, authentication, exclusion and deduplication. When I teach law students about

hashing, I tell them that hash functions are published, standard mathematical algorithms into

which we input digital data of arbitrary size and the hash algorithm spits out a bit string (again,

just a sequence of numbers) of fixed length called a “hash value.” Hash values almost exclusively

correspond to the digital data fed into the algorithm (termed “the message”) such that the

chance of two different messages sharing the same hash value (called a “hash collision”) is

exceptionally remote. But because it’s possible, we can’t say each hash value is truly “unique.”

Using hash algorithms, any volume of data—from the tiniest file to the contents of entire hard

drives and beyond—can be almost uniquely expressed as an alphanumeric sequence. In the case

of the MD5 hash function, data is distilled to a value written as 32 hexadecimal characters (0-9

and A-F). It’s hard to understand until you’ve figured out Base16; but, those 32 characters

represent 340 trillion, trillion, trillion different possible values (2128 or 1632).

Hash functions are one-way calculations, meaning you can’t reverse (“invert”) a hash value and

ascertain the data corresponding to the hash value in the same way that you can’t decode a

human fingerprint to deduce an individual’s eye color or IQ. It identifies, but it doesn’t reveal.

Another key feature of hashing is that, due to the so-called “avalanche effect” characteristic of a

well-constructed cryptographic algorithm, when the data input changes even slightly, the hash

value changes dramatically, meaning there’s no discernable relationship between inputs and

outputs. Similarity between hash values doesn’t signal any similarity in the data hashed.

There are lots of different hash algorithms, and different hash algorithms generate different hash

values for the same data. That is, the hash value for the phrase “Mary had a little lamb” will be

the following in each of the following hash algorithms:

MD5: e946adb45d4299def2071880d30136d4

SHA-1: bac9388d0498fb378e528d35abd05792291af182

SHA-256: efe473564cb63a7bf025dd691ef0ae0ac906c03ab408375b9094e326c2ad9a76

It’s identical data, but it prompts different hashes using different algorithms. Conversely,

identical data will generate identical hash values when using the same hash function. Freely

published hash functions are available to all, so if two people (or machines) anywhere use the

same hash function against data and generate matching hash values, their data is identical. If

42

they get different hash values, they can be confident the data is different. The differences may

be trivial in practical terms, but any difference suffices to produce markedly different hash values.

I don’t dare go deeper in the classroom, but let’s dig down a bit here and explore the operations

behind calculating an MD5 hash value. If you really don’t care, just skip ahead to deduplication.

A widely used hash function is the Message Digest 5 (MD5) hash algorithm circulated in 1992 by

MIT professor Ron Rivest as Requests for Comments 1321. Requests for Comments or RFCs are

a way the technology community circulates proposed standards and innovations generally

relating to the Internet. MD5 has been compromised in terms of its immunity to hash collisions

in that’s it’s feasible to generate different inputs that generate matching MD5 hashes; however,

MD5’s flaws minimally impact its use in e-discovery where it remains a practical and efficient way

to identify, deduplicate and cull datasets.

When I earlier spoke of a hash algorithm generating a hash value of “fixed length,” that fixed

length for MD5 hashes is 128 bits (16 bytes) or 128 ones and zeroes in binary or Base2 notation.

That’s a vast number space. It’s 340,282,366,920,938,463,463,374,607,431,768,211,455

possibilities in our familiar decimal or Base10 notation. It’s also unwieldy, so we shorten MD5

hash values to a 32-character Base16 or hexadecimal (“hex”) notation. It’s the same numeric

value conveniently expressed in a different base or “radix,” so it requires only one-fourth as many

characters to write the number in hex notation as in binary notation.

That 32-character MD5 hash value is built from four 32-bit calculated values that are

concatenated, that is, positioned end to end to form a 128-bit sequence or “string.” Since we

can write a 32-bit number as eight hexadecimal characters, we can write a 128-bit number as

four concatenated 8-character hex values forming a single 32-character hexadecimal hash. Each

of those four 32-bit values are the product of 64 calculations (four rounds of 16 operations)

performed on each 512-bit chunk of the data being hashed while applying various specified

constants. After each round of calculations, the data shifts within the array in a practice called

left bit rotation, and a new round of calculations begins. The entire hashing process starts by

padding the message data to insure it neatly comprises 512-bit chunks and by initializing the four

32-bit variables to four default values.

For those wanting to see how this is done programmatically, here’s the notated MD5 pseudocode

(from Wikipedia):

//Note: All variables are unsigned 32 bit and wrap modulo 2^32 when calculating

var int[64] s, K

var int i

https://tools.ietf.org/html/rfc1321

43

//s specifies the per-round shift amounts

s[0..15] := { 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22 }

s[16..31] := { 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20 }

s[32..47] := { 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23 }

s[48..63] := { 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21 }

//Use binary integer part of the sines of integers (Radians) as constants:

for i from 0 to 63

 K[i] := floor(232 × abs(sin(i + 1)))

end for

//(Or just use the following precomputed table):

K[0.. 3] := { 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee }

K[4.. 7] := { 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501 }

K[8..11] := { 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be }

K[12..15] := { 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821 }

K[16..19] := { 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa }

K[20..23] := { 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8 }

K[24..27] := { 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed }

K[28..31] := { 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a }

K[32..35] := { 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c }

K[36..39] := { 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70 }

K[40..43] := { 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05 }

K[44..47] := { 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665 }

K[48..51] := { 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039 }

K[52..55] := { 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1 }

K[56..59] := { 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1 }

K[60..63] := { 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 }

//Initialize variables:

var int a0 := 0x67452301 //A

var int b0 := 0xefcdab89 //B

var int c0 := 0x98badcfe //C

var int d0 := 0x10325476 //D

//Pre-processing: adding a single 1 bit

append "1" bit to message

// Notice: the input bytes are considered as bits strings,

// where the first bit is the most significant bit of the byte.[50]

https://en.wikipedia.org/wiki/MD5#cite_note-50

44

//Pre-processing: padding with zeros

append "0" bit until message length in bits ≡ 448 (mod 512)

append original length in bits mod 264 to message

//Process the message in successive 512-bit chunks:

for each 512-bit chunk of padded message

 break chunk into sixteen 32-bit words M[j], 0 ≤ j ≤ 15

 //Initialize hash value for this chunk:

 var int A := a0

 var int B := b0

 var int C := c0

 var int D := d0

 //Main loop:

 for i from 0 to 63

 var int F, g

 if 0 ≤ i ≤ 15 then

 F := (B and C) or ((not B) and D)

 g := i

 else if 16 ≤ i ≤ 31 then

 F := (D and B) or ((not D) and C)

 g := (5×i + 1) mod 16

 else if 32 ≤ i ≤ 47 then

 F := B xor C xor D

 g := (3×i + 5) mod 16

 else if 48 ≤ i ≤ 63 then

 F := C xor (B or (not D))

 g := (7×i) mod 16

 //Be wary of the below definitions of a,b,c,d

 F := F + A + K[i] + M[g]

 A := D

 D := C

 C := B

 B := B + leftrotate(F, s[i])

 end for

 //Add this chunk's hash to result so far:

 a0 := a0 + A

 b0 := b0 + B

45

 c0 := c0 + C

 d0 := d0 + D

end for

var char digest[16] := a0 append b0 append c0 append d0 //(Output is in little-endian)

//leftrotate function definition

leftrotate (x, c)

 return (x << c) binary or (x >> (32-c));

Despite the complexity of these calculations, it’s possible to contrive hash collisions where

different data generate matching MD5 hash values. Accordingly, the cybersecurity community

have moved away from MD5 in applications requiring collision resistance, such as digital

signatures.

You may wonder why MD5 remains in wide use if it’s “broken” by engineered hash collisions.

Why not simply turn to more secure algorithms like SHA-256? Some tools and vendors have done

so, but a justification for MD5’s survival is that the additional calculations required to make

alternate hash functions more secure consume more time and computing resources. Too, most

tasks in e-discovery built around hashing—e.g., deduplication and De-NISTing—don’t demand

strict protection from engineered hash collisions. For e-discovery, MD5 “ain’t broke,” so there’s

little cause to fix it.

Deduplication

Processing information items to calculate hash values supports several capabilities, but probably

none more useful than deduplication.

Near-Deduplication

A modern hard drive holds trillions of bytes, and even a single Outlook e-mail container file

typically comprises billions of bytes. Accordingly, it’s easier and faster to compare 32-

character/16 byte “fingerprints” of voluminous data than to compare the data itself, particularly

as the comparisons must be made repeatedly when information is collected and processed in e-

discovery. In practice, each file ingested and item extracted is hashed, and its hash value is

compared to the hash values of items previously ingested and extracted to determine if the file

or item has been seen before. The first file is sometimes called the “pivot file,” and subsequent

files with matching hashes are suppressed as duplicates, and the instances of each duplicate and

certain metadata is typically noted in a deduplication or “occurrence” log.

46

When the data is comprised of loose files and attachments, a hash algorithm tends to be applied

to the full contents of the files. Notice that I said to “contents.” Some data we associate with

files is not actually stored inside the file but must be gathered from the file system of the device

storing the data. Such “system metadata” is not contained within the file and, thus, is not

included in the calculation when the file’s content is hashed. A file’s name is perhaps the best

example of this. Recall that even slight differences in files cause them to generate different hash

values. But, since a file’s name is not typically housed within the file, you can change a file’s name

without altering its hash value.

So, the ability of hash algorithms to deduplicate depends upon whether the numeric values that

serve as building blocks for the data differ from file to file. Keep that firmly in mind as we consider

the many forms in which the informational payload of a document may manifest.

A Word .DOCX document is constructed of a mix of text and rich media encoded in Extensible

Markup Language (XML), then compressed using the ubiquitous ZIP compression algorithm. It’s

a file designed to be read by Microsoft Word.

When you print the “same” Word document to an Adobe PDF format, it’s reconstructed in a page

description language specifically designed to work with Adobe Acrobat. It’s structured, encoded

and compressed in an entirely different way than the Word file and, as a different format, carries

a different binary header signature, too.

When you take the printed version of the document and scan it to a Tagged Image File Format

(TIFF), you’ve taken a picture of the document, now constructed in still another different

format—one designed for TIFF viewer applications.

To the uninitiated, they are all the “same” document and might look pretty much the same

printed to paper; but as ESI, their structures and encoding schemes are radically

different. Moreover, even files generated in the same format may not be digitally identical when

made at separate times. For example, no two optical scans of a document will produce identical

hash values because there will always be some variation in the data acquired from scan to

scan. Slight differences perhaps; but, any difference at all in content is going to frustrate the

ability to generate matching hash values.

Opinions are cheap. Testing is truth. To illustrate this, I created a Word document of the text of

Lincoln’s Gettysburg Address. First, I saved it in the latest .DOCX Word format. Then, I saved a

copy in the older .DOC format. Next, I saved the Word document to a .PDF format, using both

the Save as PDF and Print to PDF methods. Finally, I printed and scanned the document to TIFF

and PDF. Without shifting the document on the scanner, I scanned it several times at matching

and differing resolutions.

47

I then hashed all the iterations of the “same” document. As the table below demonstrates, none

of them matched hash-wise, not even the successive scans of the paper document:

Thus, file hash matching—the simplest and most defensible approach to deduplication—won’t

serve to deduplicate the “same” document when it takes different forms or is made optically at

separate times.

Now, here’s where it can get confusing. If you copied any of the electronic files listed above, the

duplicate files would hash match the source originals and would handily deduplicate by

hash. Consequently, multiple copies of the same electronic files will deduplicate, but that is

because the files being compared have the same digital content. But we must be careful to

distinguish the identicality seen in multiple iterations of the same file from the pronounced

differences seen when we generate different electronic versions at different times from the same

content. One notable exception seen in my testing was that successively saving the same Word

document to a PDF format in the same manner sometimes generated identical PDF files. It didn’t

occur consistently (i.e., if enough time passed, changes in metadata in the source document

triggered differences prompting the calculation of different hash values); but it happened, so is

worth mentioning.

Consider hash matching in this real-life scenario: The source data were Outlook .PSTs from

various custodians, each under 2GB in size. The form of production was single messages as

.MSGs. Reportedly, the new review platform (actually a rather old concept search tool) was

incapable of accepting an overlay load file that could simply tag the items already produced, so

the messages already produced would have to be culled from the .PSTs before they were

loaded. Screwy, to be sure; but we take our cases as they come, right?

It’s important to know that a somewhat obscure quirk of the .MSG message format is that when

the same Outlook message is exported as an .MSG at various times, each exported message

generates a different hash value because of embedded time of creation values. The differing

48

hash values make it impossible to use hashes of .MSGs for deduplication without processing (i.e.,

normalizing) the data to a format better suited to the task.

Here, a quick primer on deduplication of e-mail might be useful.

Mechanized deduplication of e-mail data can be grounded on three basic approaches:

1. Hashing the entire message as a file (i.e., a defined block of data) containing the e-mail

messages and comparing the resulting hash value for each individual message file. If they

match, the files hold the same data. This tends not to work for e-mail messages exported as

files because, when an e-mail message is stored as a file, messages that we regard as identical

in common parlance (such as identical message bodies sent to multiple recipients) are not

identical in terms of their byte content. The differences tend to reflect either variations in

transmission seen in the message header data (the messages having traversed different paths

to reach different recipients) or variations in time (the same message containing embedded

time data when exported to single message storage formats as discussed above with respect

to the .MSG format).

2. Hashing segments of the message using the same hash algorithm and comparing the hash

values for each corresponding segment to determine relative identicality. With this

approach, a hash value is calculated for the various parts of a message (e.g., Subject, To,

From, CC, Message Body, and Attachments) and these values are compared to the hash

values calculated against corresponding parts of other messages to determine if they

match. This method requires exclusion of those parts of a message that are certain to differ

(such as portions of message headers containing server paths and unique message IDs) and

normalization of segments, so that contents of those segments are presented to the hash

algorithm in a consistent way.

3. Textual comparison of segments of the message to determine if certain segments of the

message match to such an extent that the messages may be deemed sufficiently “identical”

to allow them to be treated as the same for purposes of review and exclusion. This is much

the same approach as (2) above, but without the use of hashing to compare the segments.

Arguably, a fourth approach entails a mix of these methods.

All these approaches can be frustrated by working from differing forms of the “same” data

because, from the standpoint of the tools which compare the information, the forms are

significantly different. Thus, if a message has been “printed” to a TIFF image, the bytes that make

up the TIFF image bear no digital resemblance to the bytes comprising the corresponding e-mail

message, any more than a photo of a rose smells or feels like the rose.

49

In short, changing forms of ESI changes data, and changing data changes hash

values. Deduplication by hashing requires the same source data and the same, consistent

application of algorithms. This is easy and inexpensive to accomplish, but it requires a compatible

workflow to insure that evidence is not altered in processing so as to prevent the application of

simple and inexpensive mechanized deduplication.

When parties cannot deduplicate e-mail, the reasons will likely be one or more of the following:

1. They are working from different forms of the ESI;

2. They are failing to consistently exclude inherently non-identical data (like message headers

and IDs) from the hash calculation;

3. They are not properly normalizing the message data (such as by ordering all addresses

alphabetically without aliases);

4. They are using different hash algorithms;

5. They are not preserving the hash values throughout the process; or

6. They are changing the data.

The excerpts that follow are from Microsoft and Relativity support publications, each describes

the methodology employed to deduplicate e-mail messages:

Office 365 Deduplication

Office 365 eDiscovery tools use a combination of the following e-mail properties to

determine whether a message is a duplicate:

• InternetMessageId - This property specifies the Internet message identifier of an

e-mail message, which is a globally unique identifier that refers to a specific

version of a specific message. This ID is generated by the sender's e-mail client

program or host e-mail system that sends the message. If a person sends a

message to more than one recipient, the Internet message ID will be the same for

each instance of the message. Subsequent revisions to the original message will

receive a different message identifier.

• ConversationTopic - his property specifies the subject of the conversation thread

of a message. The value of the ConversationTopic property is the string that

describes the overall topic of the conversation. A conservation consists of an initial

message and all messages sent in reply to the initial message. Messages within the

same conversation have the same value for the ConversationTopic property. The

value of this property is typically the Subject line from the initial message that

spawned the conversation.

50

• BodyTagInfo - This is an internal Exchange store property. The value of this

property is calculated by checking various attributes in the body of the message.

This property is used to identify differences in the body of messages.

https://docs.microsoft.com/en-us/microsoft-365/compliance/de-duplication-in-

ediscovery-search-results

Relativity E-Mail Deduplication

The Relativity Processing Console (RPC) generates four different hashes for e-mails

and keeps each hash value separate, which allows users to de-duplicate in the RPC

based on individual hashes and not an all-inclusive hash string.

For example, if you’re using the RPC, you have the ability to de-duplicate one

custodian’s files against those of another custodian based only on the body hash and

not the attachment or recipient hashes.

Note that the following information is relevant to the RPC only and not to web

processing in Relativity:

▪ Body hash - takes the text of the body of the e-mail and generates a hash.

▪ Header hash - takes the message time, subject, author’s name and e-mail, and

generates a hash.

▪ Recipient hash - takes the recipient's name and e-mails and generates a hash.

▪ Attachment hash - takes each SHA256 hash of each attachment and hashes

the SHA256 hashes together.

MessageBodyHash

To calculate an e-mail’s MessageBodyHash, the RPC:

1. Removes all carriage returns, line feeds, spaces, and tabs from the body of the

e-mail to account for formatting variations. An example of this is when Outlook

changes the formatting of an e-mail and displays a message stating, “Extra Line

breaks in this message were removed.”

2. Captures the PR_BODY tag from the MSG (if it’s present) and converts it into

a Unicode string.

3. Gets the native body from the PR_RTF_COMPRESSED tag (if the PR_BODY tag

isn’t present) and either converts the HTML or the RTF to a Unicode string.

4. Constructs a SHA256 hash from the Unicode string derived in step 2 or 3

above.

HeaderHash

To calculate an e-mail’s HeaderHash, the RPC:

1. Constructs a Unicode string containing

Subject<crlf>SenderName<crlf>SenderEMail<crlf>ClientSubmitTime.

https://docs.microsoft.com/en-us/microsoft-365/compliance/de-duplication-in-ediscovery-search-results
https://docs.microsoft.com/en-us/microsoft-365/compliance/de-duplication-in-ediscovery-search-results
https://docs.microsoft.com/en-us/microsoft-365/compliance/de-duplication-in-ediscovery-search-results
https://docs.microsoft.com/en-us/microsoft-365/compliance/de-duplication-in-ediscovery-search-results

51

2. Derives the SHA256 hash from the header string. The ClientSubmitTime is

formatted with the following: m/d/yyyy hh:mm:ss AM/PM. The following is an

example of a constructed string:

RE: Your last email

Robert Simpson

robert@relativity.com

10/4/2010 05:42:01 PM

RecipientHash

The RPC calculates an e-mail’s RecipientHash through the following steps:

1. Constructs a Unicode string by looping through each recipient in the e-mail

and inserting each recipient into the string. Note that BCC is included in the

Recipients element of the hash.

2. Derives the SHA256 hash from the recipient string

RecipientName<space>RecipientEMail<crlf>. The following is an example of a

constructed recipient string of two recipients:

Russell Scarcella

rscarcella@relativity.com

Kristen Vercellino

kvercellino@relativity.com

AttachmentHash

To calculate an e-mail’s AttachmentHash, the RPC:

1. Derive a SHA256 hash for each attachment.

o If the attachment is a loose file (not an e-mail) the normal standard

SHA256 file hash is computed for the attachment.

o If the attachment is an e-mail, we use the e-mail hashing algorithm

described in section 1.2 to generate all four de-dupe hashes. Then,

these hashes are combined using the algorithm described in section

1.3 to generate a singular SHA256 attachment hash.

2. Encodes the hash in a Unicode string as a string of hexadecimal numbers

without <crlf> separators.

3. Construct a SHA256 hash from the bytes of the composed string in Unicode

format. The following is an example of constructed string of two attachments:

80D03318867DB05E40E20CE10B7C8F511B1D0B9F336EF2C787CC3D51B9E26

BC9974C9D2C0EEC0F515C770B8282C87C1E8F957FAF34654504520A7ADC2E

0E23EA

Calculating the Relativity deduplication hash

To derive the Relativity deduplication hash, the system:

52

1. Constructs a string that includes the hashes of all four e-mail components

described above. See Calculating RPC deduplication hashes for e-mails.

2. Converts that string to a byte array of UTF8 values.

3. Feeds the bytes into a standard MD5/SHA1/SHA256 subroutine, which then

computes the hash of the UTF8 byte array.

Note: If two e-mails or loose files have an identical body, attachment, recipient, and

header hash, they are duplicates.

https://help.relativity.com/9.2/Content/Relativity/Processing/deduplication_considerati

ons.htm#Technica

Other Processing Tasks
This primer addresses the core functions of ESI processing in e-discovery, but there are many

other processing tasks that make up today’s powerful processing tools. Some examples include:

Foreign Language Detection
Several commercial and open source processing tools support the ability to recognize and

identify foreign language content, enabling selection of the right filters for text extraction,

character set selection and diacritical management. Language detection also facilitates assigning

content to native speakers for review.

Entropy Testing
Entropy testing is a statistical method by which to identify encrypted files and flag them for

special handling.

Decryption
Some processing tools support use of customizable password lists to automate decryption of

password-protected items when credentials are known.

Bad Extension Flagging
Most processing tools warn of a mismatch between a file’s binary signature and its extension,

potentially useful to resolve exceptions and detect data hiding.

Color Detection
When color conveys information, it’s useful to detect such usage and direct color-enhanced items

to production formats other than grayscale TIFF imaging.

Hidden Content Flagging
It’s common for evidence, especially Microsoft Office content, to incorporate relevant content

(like collaborative comments in Word documents and PowerPoint speaker notes) that won’t

appear in the production set. Flagging such items for special handing is a useful way to avoid

missing that discoverable (and potentially privileged) content.

https://help.relativity.com/9.2/Content/Relativity/Processing/deduplication_considerations.htm#Calculat
https://help.relativity.com/9.2/Content/Relativity/Processing/deduplication_considerations.htm#Technica
https://help.relativity.com/9.2/Content/Relativity/Processing/deduplication_considerations.htm#Technica

53

N-Gram and Shingle Generation
Increasingly, advanced analytics like predictive coding aid the review process and depend upon

the ability to map document content in ways that support algorithmic analysis. N-gram

generation and text shingling are text sampling techniques that support latent-semantic

analytics.

Optical Character Recognition (OCR)
OCR is the primary means by which text stored as imagery, thus lacking a searchable text layer

(e.g., TIFF images, JPGs and PDFs) can be made text searchable. Some processing tools natively

support optical character recognition, and others require users to run OCR against exception files

in a separate workflow then re-ingest the content accompanied by its OCR text.

Virus Scanning
Files collected in e-discovery may be plagued by malware, so processing may include methods to

quarantine afflicted content via virus scanning.

Production Processing
Heretofore, we’ve concentrated on processing before search and review, but there’s typically a

processing workflow that follows search and review: Production Processing. Some tools and

workflows convert items in the collection to imaged formats (TIFF or PDF) before review; in

others, imaging is obviated by use of a viewer component of the review tool. If not imaged before

review, the e-discovery tool may need to process items selected for production and redaction to

imaged formats suited to production and redaction.

Further in conjunction with the production process, the tool will generate a load file to transmit

extracted metadata and data describing the organization of the production, such as pointers to

TIFF images and text extractions. Production processing will also entail assignment of Bates

numbers to the items produced and embossing of Bates numbers and restrictive language (i.e.,

“Produced Subject to Protective Order”).

Illustration 1:

E-Discovery

Processing Model
Larger version next page.

54

55

[Content _Types].xml contains the

 plain text XML content seen below.

 Note the MIME type declaration:

application/vnd.openxmlformats-

officedocument.wordprocessingml.docum

ent.main+xml

Illustration 2: Anatomy of a Word DOCX File
By changing a Word document’s extension from .DOCX to .ZIP, you can “trick” Windows into

decompressing the file and sneak a peek into its internal structure and contents. Those contents

little resemble the document you’d see in Word; but, as you peruse the various folders and

explore their contents, you’ll find the text, embedded images, formatting instructions and other

components Word assembles to compose the document.

The root level of the decompressed file (below left) contains four folders and one XML file.

	Table of Contents
	Introduction
	Why process ESI in e-discovery? Isn’t it “review ready?”

	Files
	A Bit About and a Byte Out of Files
	Digital Encoding
	Decimal and Binary: Base 10 and Base Two
	Bits
	Bytes
	The Magic Decoder Ring called ASCII
	Unicode
	Mind the Gap!
	Hex
	Base64
	Why Care about Encoding?
	Hypothetical: TaggedyAnn

	File Type Identification
	File Extensions
	Binary File Signatures
	File Structure

	Data Compression

	Identification on Ingestion
	Media (MIME) Type Detection
	Media Type Tree Structure

	When All Else Fails: Octet Streams and Text Stripping

	Data Extraction and Document Filters
	Recursion and Embedded Object Extraction
	Simple Document
	Structured Document
	Compound Document
	Simple Container
	Container with Text

	Family Tracking and Unitization: Keeping Up with the Parts
	Exceptions Reporting: Keeping Track of Failures
	Lexical Preprocessing of Extracted Text
	Normalization
	Character Normalization
	Unicode Normalization
	Diacritical Normalization
	Case Normalization
	Impact of Normalization on Discovery Outcomes

	Time Zone Normalization
	Parsing and Tokenization
	Building a Database and Concordance Index
	The Database
	The Concordance Index

	Culling and Selecting the Dataset
	Immaterial Item Suppression
	De-NISTing
	Cryptographic Hashing:
	Deduplication
	Near-Deduplication
	Office 365 Deduplication
	Relativity E-Mail Deduplication

	Other Processing Tasks
	Foreign Language Detection
	Entropy Testing
	Decryption
	Bad Extension Flagging
	Color Detection
	Hidden Content Flagging
	N-Gram and Shingle Generation
	Optical Character Recognition (OCR)
	Virus Scanning

	Production Processing
	Illustration 1: E-Discovery Processing Model
	Illustration 2: Anatomy of a Word DOCX File

